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THE PROBLEM OF PROOF IDENTITY

When are two proofs essentially the same?
but also

What is a proof? What does it mean to prove?

First explicit formulations by Kreisel (1965) and Prawitz (1971),
the latter together with the

Normalization Conjecture:

«Proots are essentially the same proof if and only if they have the same normal form.»



THE PROBLEM OF PROOF IDENTITY

Now often known as Hilbert’s 24" problem:

«Criteria of simplicity, or proof of the greatest simplicity of certain proofs. Develop a theory of the
method of proof in mathematics in general. Under a given set of conditions there can be but one
simplest proof. Quite generally, if there are two proots for a theorem, you must keep going until you
have derived each from the other, or until it becomes quite evident what variant conditions (and aids)
have been used in the two proots. Given two routes, it is not right to take either of these two or to look
for a third; it is necessary to investigate the area lying between the two routes.»



THE PROBLEM OF PROOF IDENTITY

Our point of view:

What is the content of (syntactical) proofs? Which kind of information do they provide, and why does
it count as evidence towards some proposition?

Methodology:
— find interesting equivalence relations on syntactical proot systems;
— find canonical representations of the equivalence classes, thus providing:
¢ equational reasoning;

¢ an account of the informational content of proofs.

The extensional approach fails:

set theoretic maps remember at most cardinality, forget structure.



THE PROBLEM OF PROOF IDENTITY

Proof system: a pair (S, )
where
R CESxL
such that

(i) decidable (correctness condition)

(ii) Pkt A = A valid (soundness)

(iii) possibly the converse (completeness)



THE PROBLEM OF PROOF IDENTITY

Proof system: a pair (S, )
where
R CESxL
such that

(i) decidable (correctness condition)

(ii) Pkt A = A valid (soundness)

(iii) possibly the converse (completeness)

Cook & Reckhow (1976), more recently Hughes (2006):

I should be decidable in polynomial time.



NAMED FORMULAS &« SEQUENTS

Idea: track atomic occurrences by assigning them unique names
—(aANpP)Va,p
X y zZ w
Technically: sharing-free formulas on a countable set of names

T1,Tg =X |T1y VTo|T1 AN To (x €N, 71, To share no names)

X =X TIVTo=T{ANTg T1ANTog=T1V Ty

Sequents: sharing-free, finite sets of formulas on names, plus an atom assignment
I'=(dp,atpy Spr=A{711,...,7,}  atp:names(dp) > A

IA=(prUdaatpUaty) I =(dpmaty) A= ({1} aty)



GS4 ON NAMED SEQUENTS

Identities:

o ax 1A I—F,Z ot
5 — I

Logical rules:

—1"A,B y —I""A 1B A
~1',AVB 1, ANANB

As a proof system:

(ST, tzc,) where ST is the set of all finite sequent-labeled binary trees, and
Pz, I' < P withroot I constructed by the rules above.



ATOMIC COMMITMENTS

An interpretation of sequents (and formulas) as sets of sets of names:

AC(I") € P (N)

c € AC(/") 1isacommitment
represents a disjunctive clause
in the atomic occurrences of [’

satisfying the following equations:
AC(I") = {names(/") } for /' atomic (comm-at)
AC(I'),Av B) =AC(I',A,B) (comm-or)

AC(I')ANB) =AC({",A) UAC(/I',B) (comm-and)



ATOMIC COMMITMENTS

Definition (Clique product). For all sets S, T C % (N) of commitments let

ST ={XUY | XeSYeTl}

Property. The operator thus defined enjoys

Commutativity: Associativity:

ST =TwS ST WwU=Sw (TwU)

Identity: Absorption:
Sy{d}=S Syd=0n

Distributivity over unions:

SUDHwU=WSwU)U (TwU)



ATOMIC COMMITMENTS

Definition. By induction on the sharing-free formulas on names:
AC(x) = {{x}} AC(T1V 7o) = AC(71) WAC(79) AC(T1{ AN 7o) = AC(71) UAC(79)

For any sequent /' let

AC(1") = L>9,TE¢FAC(T)

Lemma. The function AC satisfies the equations (comm-at),
(comm-or), (comm-and), and additionally

AC(I',A) = AC(1") w AC(AQ)
AC(I") ={cnNnames(/’) |c e AC(I",A)}

AC(I") = {c\names(4) |c € AC(/",AQ)}



THE PROOF SYSTEM CG

Definition. Commitment graphs on a sequent /' are
hypergraphs G = (V o, E )

on the names of /', i.e.

— the vertices Vi = names (/") are the names of /’;
— the hyperedges £ C % (Vo) are non-empty sets of names of /;

such that every edge is maximal w.r.t. inclusion within E g,
thatis we have forall ¢, 0 € L

cCO0 = ¢=0.



THE PROOF SYSTEM CG
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THE PROOF SYSTEM CG

Definition. The proof system (G is specified by the pair (NG, k=) where

NG is the set of all finite hypergraphs on the set N of names, and
for all hypergraphs G € NG and sequents I', G Iz I if and only if

(i) G is a commitment graph on [’ (relevance)

(i) AC(I") CE, (adequacy)

(each atomic commitment of /' is an hyperedge of G3)

(iii) forall ¢ € E; thereare x,y € ¢ suchthat ['[x] = I'[y] (validity)

(each commitment in G links at least one pair of dual atoms)



THE PROOF SYSTEM CG
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THE PROOF SYSTEM CG

Lemma (Correctness-preserving operations). The CG -correctness predicate
is closed under the following rules:

aX
CG(I, @, a) ke Iy, Gl T,AVB Gt I',A,B
x Yy X Yy
Grk-1""A H-1,6B Grk-1,ANB Grk-1,ANB
CG CG LA CG A CG A,

GUH ;. I,AAB Glpatee TA Gl gt I',B



THE PROOF SYSTEM CG

Lemma (Correctness-preserving operations). The CG -correctness predicate
is closed under the following rules:

I atomic G IEG F,A,B l{\/ G IEG F,AVB TV
dX
CG(I, @, a) b I, @, Gt I, AVB Gtz I',A,B
X Yy Xy
Gleg I'A Higg I'B | Gleg LANB Gieg LANB
GUH ;. ', AAB Glyate A Gtrgltc,B "
where

CG(') = (names(/'),AC(/")) is the graph formed from the atomic commitments of /’;
GUH = (VoUVy,Es U Ez) denotes hypergraph union;

Gl =(VaNnames(l"),{c € Es | ¢ C names(/")}) denotes hypergraph restriction.



MAIN RESULTS (pPaART 1)

Corollary. For all sequents 1,

gL &= kg L

Theorem. The system CG is sound and complete w.r.t. classical propositional validity.



MAIN RESULTS (pPART I}

Lemma. tz- I' = CG([") k¢ I

Definition (Strict adequacy).Let G tz-_ [ ifandonlyif G Iz /' and Eg = AC(1").
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Lemma. tz- I' = CG([") k¢ I

Definition (Strict adequacy).Let G tz-_ [ ifandonlyif G Iz /' and Eg = AC(1").

Property (Decomposition). If G tz-. I',A A\ B, then

G = (Gl ) U (Gl B)-

Property (Uniqueness).If Gtz I" and H \z-_ I',then G = H.



MAIN RESULTS (PaART I}

Lemma. tz- I' = CG([") k¢ I

Definition (Strict adequacy).Let G tz-_ [ ifandonlyif G Iz /' and Eg = AC(1").

Property (Decomposition). If G tz-. I',A A\ B, then

G = (Gl ) U (Gl B)-

Property (Uniqueness).If Gtz I" and H \z-_ I',then G = H.

Theorem. CG (resp. CGs) is a proof system in the sense of Cook & Reckhow.



THE PROOF SYSTEM WCG

Definition. Witnessed commitment graphs on a sequent /' are
pairs G = (Vg, <)
G

with < C P (Vg) x P (V) arelation between subsets of Vg

such that

- (V@, @) is acommitment graph on /';

— for each commitment ¢ € E¢g, (¢, Wg (¢)) is a simple graph;
where

— Eg = {c | dw. ¢ < tv} is the set of all commitmentsin G;
G

— Wg(c) = {10 | ¢ < to} is the set of all witnesses associated to a commitment cin (5.
G



THE PROOF SYSTEM WCG
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THE PROOF SYSTEM WCG

Definition. The proof system WCG is specified by the pair (WNG, k;,-) where

WNG is the set of all finite witnessed graphs on the set N of names, and

for all hypergraphs G € WNG and sequents 1", G k- I’ if and only if

(i) G is a witnessed commitment graph on [’ (relevance)

(i) Eo = AC) (strict adequacy)

(the atomic commitment of /' are those in (x)

(iii) if ¢ <{x,y} then ['[x] = ['[y] (reliability)

(witnesses link dual atoms)



CUT-ELIMINATION FOR WCQG




CUT-ELIMINATION FOR WCG

Definition (Relativized witnessing). Let (x be a witnessed commitment graph,
I C N an arbitrary set of names.

Write ¢ 5 tv iff thereis 0 < tv suchthatc =0\ /.
\ G



CUT-ELIMINATION FOR WCG

Definition (Alternating path). Let (&, H be any two witnessed commitment graphs,
I C N an arbitrary set of names.

An alternating path witnessing ¢ between  and H through the interface I is
a sequence X1, ...,X,, € Vg U Vgof pairwise distinct vertices of G, H

such that

(i) x9,...,x,_1 € I (allinternal vertices belong to the interface), and

(ii) either ¢ < 1o, forallodd i and ¢ < tv; forall even z,
G\I H\I

or¢ < 1o;foralleveni and ¢ < tv; forallodd i,
G\I H\

where t0; = {x;,x;, 1} foralll <i <n.

We say that an alternating path is complete iff x1,x, & 1,
i.e. if its endpoints lie outside the interface.



CUT-ELIMINATION FOR WCG

Definition (Composition of WCGs). Let (&, H be any two witnessed commitment graphs,
I C N an arbitrary set of names.

Define the composite of x and H on the interface I as the WCG
GO 7 H=(V, <)

where

V=VgUVyg \I,and

¢ < {x,y} iff there is an alternating path x1, ... ,X,, witnessing ¢

between ¢ and H through the interface I
such that x1 =x and x,, = .



CUT-ELIMINATION FOR WCQG

Theorem (Hauptsatz). The WCG -correctness predicate is closed under composition:

G ycc VA Glee LA
GosHbK I

cut

Proof sketch. By induction on the complexity of the conclusion /.

G ycc I",BVC,A T H k. I",BVvC,A T
Y — TV
Gk I",B,C,A Ht..I',B,C,A
GosHEy I",B,C

GQAHIVVCGF,’BVC

cut

IV



CUT-ELIMINATION FOR WCQG

Theorem (Hauptsatz). The WCG -correctness predicate is closed under composition:

G ycc VA Glee LA
GosHbK I

cut

Proof sketch. By induction on the complexity of the conclusion /.

Gy ', BANC,A T H bty I/, BAC,A A
; N\ , — |
Gl B.a Kucg 17> B,A HI 1 p 2 e 1758, A

(Gl BA) ©Oa (HFF’,B,Z) vee 1> B
(G Oy H)r]“’,B IVVCG F,,B

cut




CUT-ELIMINATION FOR WCQG

Theorem (Hauptsatz). The WCG -correctness predicate is closed under composition:

G ycc VA Glee LA
G@AH IVVCG A

cut

Proof sketch. By induction on the complexity of the conclusion /.

For atomic /', construct a complete alternating path
and prove reliability (hard).



WITNESSED GS4

Identities:

——w-ax  +FI1,A FT,A
xyb1l,a,a e cut

Structural rules:

ol A ol
=

L

Logical rules:

—1",A, B y ~I""A +1I,B
—1',AV B 1, ANANB

N\



MAIN RESULTS (pPaART 11}

Theorem. There is a cut-elimination procedure for WGS4 that
preserves the interpretation of WGS4 derivations as WCG proofs.

Proof sketch. By induction on the height of the derivation. Permute all logical rules below cuts
until they are reduced to atomic contexts, then compute the compositionin WCG and
reconstruct a WGS4 derivation using axioms and superpositions.

Theorem. Interpretation in WCG identifies WGS4 derivations up to

(i) arbitrary permutations of logical rules;
(ii)) commutativity, associativity and idempotency of superpositions;
(iii) cut-elimination.



RELATED WORHK

WCG and its composition algorithm are strongly related with Andrews’ system of refutations
by matings (Andrews 1976, 1980), as well as with Lamarche & Strafiburger’s system of classical
proof-nets (Lamarche & Strafdburger 2005, Strafdburger 2011), known as B -nets.

In contrast with WCG, B -nets

— tail to be a proot system in the sense of Cook & Reckhow;

— are not invariant under any known cut-elimination procedure,
either for WGS4 or for more traditional formulations
of classical sequent calculus;

— are sequentializable in multiplicative sequent calculus
but notin WGS4 (permutations of conjunction rules are not identities).

The theory of proot equivalence induced by I3 -nets
is incomparable with the one induced by WCG.




FUTURE WORHK

WCG can interpret multiplicative style sequent calculi:
which proofs are identical under this interpretation?

Relationship with known cut-elimination procedures?

Complete cut-reduction procedure?

The composition algorithms tracks information attached to witness edges:
What about proper axioms / provability in theories?

What about extra-logical reasoning?
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