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THE PROBLEM OF PROOF IDENTITY

When are two proofs essentially the same?

but also

What is a proof?What does it mean to prove?

First explicit formulations by Kreisel (1965) and Prawitz (1971),
the latter together with the

Normalization Conjecture:

«Proofs are essentially the same proof if and only if they have the same normal form.»



THE PROBLEM OF PROOF IDENTITY

Now often known asHilbert’s 24th problem:

«Criteria of simplicity, or proof of the greatest simplicity of certain proofs. Develop a theory of the
method of proof inmathematics in general. Under a given set of conditions there can be but one

simplest proof. Quite generally, if there are two proofs for a theorem, youmust keep going until you
have derived each from the other, or until it becomes quite evident what variant conditions (and aids)
have been used in the two proofs. Given two routes, it is not right to take either of these two or to look

for a third; it is necessary to investigate the area lying between the two routes.»



THE PROBLEM OF PROOF IDENTITY

Our point of view:

What is the content of (syntactical) proofs?Which kind of information do they provide, andwhy does
it count as evidence towards some proposition?

Methodology:

– find interesting equivalence relations on syntactical proof systems;

– find canonical representations of the equivalence classes, thus providing:

◇ equational reasoning;

◇ an account of the informational content of proofs.

The extensional approach fails:

set theoretic maps remember at most cardinality, forget structure.



THE PROBLEM OF PROOF IDENTITY

Proof system: a pair

where

such that

(i) decidable (correctness condition)

(ii) valid (soundness)

(iii) possibly the converse (completeness)



THE PROBLEM OF PROOF IDENTITY

Proof system: a pair

where

such that

(i) decidable (correctness condition)

(ii) valid (soundness)

(iii) possibly the converse (completeness)

Cook & Reckhow (1976), more recently Hughes (2006):

should be decidable in polynomial time.



NAMED FORMULAS & SEQUENTS

( share no names)

Technically: sharing-free formulas on a countable set of names

Sequents: sharing-free, finite sets of formulas on names, plus an atom assignment

Idea: track atomic occurrences by assigning them unique names



GS4 ON NAMED SEQUENTS

Identities:

Logical rules:

As a proof system:

where is the set of all finite sequent-labeled binary trees, and

with root constructed by the rules above.



ATOMIC COMMITMENTS

An interpretation of sequents (and formulas) as sets of sets of names:

satisfying the following equations:

is a commitment
represents a disjunctive clause
in the atomic occurrences of

for atomic (comm-at)

(comm-or)

(comm-and)



ATOMIC COMMITMENTS

Commutativity: Associativity:

Identity: Absorption:

Distributivity over unions:

Definition (Clique product). For all sets of commitments let

Property. The operator thus defined enjoys



ATOMIC COMMITMENTS

Definition. By induction on the sharing-free formulas on names:

For any sequent let

Lemma. The function satisfies the equations (comm-at),
(comm-or), (comm-and), and additionally



THE PROOF SYSTEM CG

Definition. Commitment graphs on a sequent are

hypergraphs

on the names of , i.e.

– the vertices are the names of ;
– the hyperedges are non-empty sets of names of ;

such that every edge ismaximal w.r.t. inclusionwithin ,
that is we have for all

.



THE PROOF SYSTEM CG



THE PROOF SYSTEM CG

Definition. The proof system is specified by the pair where

is the set of all finite hypergraphs on the set of names, and

for all hypergraphs and sequents , if and only if

(i) is a commitment graph on

(ii)
(each atomic commitment of is an hyperedge of )

(iii) for all there are such that
(each commitment in links at least one pair of dual atoms)

(relevance)

(adequacy)

(validity)



THE PROOF SYSTEM CG



THE PROOF SYSTEM CG

Lemma (Correctness-preserving operations). The -correctness predicate
is closed under the following rules:



THE PROOF SYSTEM CG

Lemma (Correctness-preserving operations). The -correctness predicate
is closed under the following rules:

where

is the graph formed from the atomic commitments of ;

denotes hypergraph union;

denotes hypergraph restriction.



MAIN RESULTS (PART I)

Corollary. For all sequents ,

Theorem. The system is sound and complete w.r.t. classical propositional validity.



MAIN RESULTS (PART I)

Lemma. .

Definition (Strict adequacy). Let if and only if and .



MAIN RESULTS (PART I)

Lemma. .

Property (Decomposition). If , then

.

Property (Uniqueness). If and , then .

Definition (Strict adequacy). Let if and only if and .



MAIN RESULTS (PART I)

Theorem. (resp. ) is a proof system in the sense of Cook & Reckhow.

Lemma. .

Property (Decomposition). If , then

.

Property (Uniqueness). If and , then .

Definition (Strict adequacy). Let if and only if and .



THE PROOF SYSTEM WCG

Definition.Witnessed commitment graphs on a sequent are

pairs

with a relation between subsets of

such that

– is a commitment graph on ;

– for each commitment , is a simple graph;

where

– is the set of all commitments in ;

– is the set of allwitnesses associated to a commitment in .



THE PROOF SYSTEM WCG



THE PROOF SYSTEM WCG

Definition. The proof system is specified by the pair where

is the set of all finite witnessed graphs on the set of names, and

for all hypergraphs and sequents , if and only if

(i) is a witnessed commitment graph on

(ii)
(the atomic commitment of are those in )

(iii) if then

(witnesses link dual atoms)

(relevance)

(strict adequacy)

(reliability)



CUT-ELIMINATION FOR WCG



CUT-ELIMINATION FOR WCG

Definition (Relativizedwitnessing). Let be a witnessed commitment graph,
an arbitrary set of names.

Write iff there is such that .



CUT-ELIMINATION FOR WCG

Definition (Alternating path). Let be any twowitnessed commitment graphs,
an arbitrary set of names.

An alternating path witnessing between and through the interface is

a sequence of pairwise distinct vertices of

such that

(i) (all internal vertices belong to the interface), and

(ii) either for all odd and for all even ,

or for all even and for all odd ,

where for all .

We say that an alternating path is complete iff ,
i.e. if its endpoints lie outside the interface.



CUT-ELIMINATION FOR WCG

Definition (Composition ofWCGs). Let be any twowitnessed commitment graphs,
an arbitrary set of names.

Define the composite of and on the interface as theWCG

where

, and

iff there is an alternating path witnessing
between and through the interface

such that and .



CUT-ELIMINATION FOR WCG

Theorem (Hauptsatz). The -correctness predicate is closed under composition:

Proof sketch. By induction on the complexity of the conclusion .
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CUT-ELIMINATION FOR WCG

Theorem (Hauptsatz). The -correctness predicate is closed under composition:

Proof sketch. By induction on the complexity of the conclusion .

For atomic , construct a complete alternating path
and prove reliability (hard).



WITNESSED GS4

Identities:

Structural rules:

Logical rules:



MAIN RESULTS (PART II)

Theorem. There is a cut-elimination procedure for that
preserves the interpretation of derivations as proofs.

Theorem. Interpretation in identifies derivations up to

(i) arbitrary permutations of logical rules;
(ii) commutativity, associativity and idempotency of superpositions;

(iii) cut-elimination.

Proof sketch. By induction on the height of the derivation. Permute all logical rules below cuts
until they are reduced to atomic contexts, then compute the composition in and
reconstruct a derivation using axioms and superpositions.



RELATED WORK
and its composition algorithm are strongly related with Andrews’ system of refutations

bymatings (Andrews 1976, 1980), as well as with Lamarche & Straßburger’s system of classical
proof-nets (Lamarche & Straßburger 2005, Straßburger 2011), known as -nets.

In contrast with , -nets

– fail to be a proof system in the sense of Cook & Reckhow;

– are not invariant under any known cut-elimination procedure,
either for or for more traditional formulations

of classical sequent calculus;

– are sequentializable inmultiplicative sequent calculus
but not in (permutations of conjunction rules are not identities).

The theory of proof equivalence induced by -nets
is incomparablewith the one induced by .



FUTURE WORK

can interpret multiplicative style sequent calculi:
which proofs are identical under this interpretation?

Relationship with known cut-elimination procedures?

Complete cut-reduction procedure?

The composition algorithms tracks information attached to witness edges:

What about proper axioms / provability in theories?

What about extra-logical reasoning?
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