
On the semantics of proofs in classical sequent
calculus.

Fabio Massaioli

Scuola Normale Superiore, Pisa, Italy fabio.massaioli@sns.it

Abstract. We discuss the problem of finding non-trivial invariants of
non-deterministic, symmetric cut-reduction procedures in the classical
sequent calculus. We come to the conclusion that (an enriched version
of) the propositional fragment of GS4 – i.e. the one-sided variant of
Kleene’s context-sharing style sequent system G4, where independent rule
applications permute freely – is an ideal framework in which to attack
the problem. We show that the graph induced by axiom rules linking
dual atom occurrences is preserved under arbitrary rule permutations in
the cut-free fragment of GS4. We then refine the notion of axiom-induced
graph so as to extend the result to derivations with cuts, and we exploit
the invertibility of logical rules to define a global normalisation procedure
that preserves the refined axiom-induced graphs, thus yielding a non-
trivial invariant of cut-elimination in GS4. Finally, we build upon the
result to devise a new proof system for classical propositional logic, where
the rule permutations of GS4 reduce to identities.

Keywords: Classical propositional logic · Sequent calculus · Cut-elimina-
tion · Invariants of cut-reduction · Proof-identity · Denotational semantics.

1 Introduction

Cut-elimination procedures in classical sequent calculus are notoriously non-
deterministic and non-confluent, both in the original formulation by Gentzen
and in later reformulations [12, 10, 4, 5, 1, 30]. It is natural to ask whether those
instances of non-confluence are superficial in nature, i.e. whether distinct normal
forms of the same derivation are in fact correlated in a non-trivial way. A famous
counter-example by Lafont [16] purports to show that the answer is negative,
that is, any notion of proof equivalence compatible with classical cut-elimination
must be a trivial one that identifies all proofs of the same sequent. Specifically,
the counter-example involves a derivation of the form

···· P

⊢A
wk

⊢A,B

···· Q

⊢A
wk

⊢A,B
cut

⊢A,A
ctr

⊢A

2 F. Massaioli

where P,Q are a pair of arbitrary derivations of the same formula A.1 Because
both cut-formulas are introduced by weakening, there are two ways to eliminate
the cut, leading to two potentially very different derivations:

···· P

⊢A
wk

⊢A,A
ctr

⊢A

···· Q

⊢A
wk

⊢A,A
ctr

⊢A

Any notion of proof identity that is compatible with the cut-elimination process
should then identify all three derivations shown above, leading to the identification
of P with Q under the reasonable assumption that the weakening-contraction se-
quence on A be an irrelevant detour. P and Q, however, were arbitrary derivations
of A, i.e. potentially not correlated in any way: this has catastrophic consequences,
making our hypothetical notion of proof identity trivial and patently unreasonable.
For example, the following three proofs would be identified:

····
⊢A

∨
⊢A ∨B

····
⊢B

∨
⊢A ∨B

····
⊢A,B

∨
⊢A ∨B

meaning that it does not matter at all whether a disjunction holds in virtue of
the left or of the right disjunct, or by contradiction. In a sense we are identifying
not just all proofs of the same thesis, but indeed all proofs altogether.

Under such a notion of proof identity, it becomes utterly useless to look for
alternative proofs of the same theorem, as they are virtually the same as any
other one and there is nothing to be learned from them: a conclusion that plainly
contradicts millennia of mathematical practice.

Many solutions have been proposed. We mention among them Krivine’s
classical realizability program [23, 22], which has yielded a fruitful analysis of
classical reasoning principles in computational terms; the approaches based
on polarised deductive systems, like Girard’s calculus LC [13], Parigot’s λµ-
calculus [28], Danos Joinet and Schellinx’ calculi LKT and LKQ [10], and finally
the approaches based on fine grained focalization and embeddings of the classical
sequent calculus into linear logic [26, 9].

From the point of view of sequent calculus, the common thread to all mentioned
solutions is to restrict cut-elimination (and sometimes the logical rules too) in a
principled way, breaking its simmetry and therefore solving the non-deterministic
cases. Typically the approaches based on λ-calculus correspond to various double-
negation translations from classical to intuitionistic logic that preserve provability.
While this approach bears many interesting results, it is not entirely satisfactory.
1 We use the one-sided formulation of sequent calculus in the style of Tait [34] to reduce

the number of rules to be treated. Negation is defined as an involution on formulas
through De Morgan dualities. Sequents are considered as multisets, i.e. quotiented
up to arbitrary permutations of their elements, hence the exchange rule is implicit

On the semantics of proofs in classical sequent calculus 3

On the one hand, every restriction is somewhat arbitrary. Looking back at
Lafont’s example above, it is hard to see any actual reason to privilege one
reduct over the other, and doing so arguably fails to capture the content of the
original derivation, which effectively offers two possible ways to prove the same
conclusion. On the other hand, the problem is by no means exclusive to sequent
calculus. Analogous examples can be constructed in a great variety of classical
proof systems, with the notable exception of those who have been accurately
tuned to avoid them, and there is even a categorical counterpart due to Joyal.
The solutions recalled above sacrifice the inherent symmetries of classical proof
systems to the possibility of extracting at least some computational content from
them. It is important to underline here that while those symmetries are not
strictly needed to characterize classical provability, the fact that classical logic
allows them to arise seems to be somehow essential to it.

A long standing open question has been then whether it could possible to
work around the non-deterministic reduction steps by natural and non-trivial
adjustments of the calculus and/or of cut-reduction steps, without resorting to
symmetry-breaking techniques like polarization or embeddings into intuitionistic
or linear logic. It is clear that Lafont’s example requires a change in the calculus.
Two simple solutions have been discussed many times in the literature: the mix
rule and non-deterministic sums.

···· P
⊢Γ

···· Q
⊢∆

mix
⊢Γ,∆

?←−

···· P
⊢Γ

wk
⊢Γ,A

···· Q
⊢∆

wk
⊢∆,A

cut
⊢Γ,∆

?−→

···· P
⊢Γ

wk
⊢Γ,∆

···· Q
⊢∆

wk
⊢Γ,∆

⊕
⊢Γ,∆

While those two rules do not contribute to classical provability, they increase the
amount of available proofs [25], accommodating for cut-free proofs that intuitively
“provide multiple alternatives.”

The non-deterministic sum (on the right) expresses the intuitive idea that
the resulting proof might be seen either as P or Q, without the reader being free
to choose between the two alternatives. Its use can be extended coherently to
all problematic situations, viewing proofs with cuts as the sum of their possible
normal forms. While this approach is known to be non-trivial and non-reducible
to intuitionistic or linear embeddings (see e.g. [5, 24]), it is also not very deep, as
it does not get to the point of what the content of a classical proof actually is;
notably, it is not known to yield a canonical representation of classical proofs up
to the related notion of proof identity. Moreover, it has no faithful representation
on paper, where the choice between P and Q is clearly available to the reader.

On the other hand, the mix rule (on the left) expresses the idea that two
proofs are effectively provided in parallel, both equally available to the reader.
Informally, this might be viewed as writing down two different proofs of the same
theorem one after the other: something that makes sense and might actually
happen in mathematics textbooks. Extending the calculus with the mix rule

4 F. Massaioli

···· P
⊢Γ,A,B

···· Q
⊢∆,A

cut
⊢Γ,∆,B

···· R
⊢Σ,B

cut
⊢Γ,∆,Σ

←−

···· P
⊢Γ,A,B

∨
⊢Γ,A ∨B

···· Q
⊢∆,A

···· R
⊢Σ,B

∧
⊢∆,Σ,A ∧B

cut
⊢Γ,∆,Σ

−→

···· P
⊢Γ,A,B

···· R
⊢Σ,B

cut
⊢Γ,A,Σ

···· Q
⊢∆,A

cut
⊢Γ,∆,Σ

···· P
⊢Γ

wk
⊢Γ,∆

←−

···· P
⊢Γ

wk
⊢Γ,A

···· Q
⊢∆

wk
⊢∆,A

cut
⊢Γ,∆

−→

···· Q
⊢∆

wk
⊢Γ,∆

···· P
⊢Γ,A,A

ctr
⊢Γ,A

···· P
⊢Γ,A,A

ctr
⊢Γ,A

···· Q
⊢∆,A,A

cut
⊢Γ,∆,A

cut
⊢Γ,∆,∆

ctr
⊢Γ,∆

←−

···· P
⊢Γ,A,A

ctr
⊢Γ,A

···· Q
⊢∆,A,A

ctr
⊢∆,A

cut
⊢Γ,∆

−→

···· P
⊢Γ,A,A

···· Q
⊢∆,A,A

ctr
⊢∆,A

cut
⊢Γ,∆,A

···· Q
⊢∆,A,A

ctr
⊢∆,A

cut
⊢Γ,∆,∆

ctr
⊢Γ,∆

Fig. 1: Non-deterministic cut-reduction steps in the classical sequent calculus;
also called logical and structural dilemmas in [9].

effectively solves the weakening-weakening problem.2 The question becomes then
how to handle the other two non-deterministic reduction steps (fig. 1).

We start from an idea which is well-established in proof-theory, i.e. that
the way axioms link together the subformulas of the conclusion is somehow
essential to the content of a proof. Such an idea underlines, e.g., the theory of
proof-nets [15] and the research program known as Geometry of Interaction [14],
but has also been widely explored – for various purposes and in many different
ways – in the classical setting, among others by Andrews [2, 3], Statman [32],
Buss and Carbone [6, 7], Lamarche and Straßburger [25, 33], Hughes [19, 20],
Guglielmi and Gundersen [17].

The approach of Andrews, Lamarche and Straßburger in particular is of
interest here: it consists in extracting graphs from each derivation, whose vertices
are the atomic formula occurrences in the conclusion and whose edges join those
dual occurrences that are related by some axiom. Andrews first considered graphs
of this kind (which he called matings) in [2], and showed in [3] how to reconstruct
natural deduction proofs from them. Lamarche and Straßburger used them in [25]
to develop a system of proof-nets for classical logic (which they called B-nets),
and provided a correctness criterion and a sequentialization theorem, as well as a
confluent and terminating cut-elimination procedure on nets which corresponds
essentially to a composition of graphs by contraction of alternating paths, in the
style of the Geometry of Interaction.

2 Note however that there is a subtle technical issue to be handled: because logical
rules might hide applications of weakenings on their subformulas, weakening cuts
cannot be eliminated directly; instead, all weakenings must first be reduced to atomic
form, something which is well-known to be possible in classical logic.

On the semantics of proofs in classical sequent calculus 5

Having such a procedure is of the essence when extracting graphs from
derivations with cuts. One has to trace the history of all atomic occurrences
through the derivation, then combine the traces with axioms and cuts in an
appropriate way to obtain the resulting graph. As an example consider the
following derivation:

ax
⊢α, α

ax
⊢α, α

∧
⊢α ∧ α, α, α

ctr
⊢α ∧ α, α

ax
⊢α, α

ax
⊢α, α

∧
⊢α, α, α ∧ α

ctr
⊢α, α ∧ α

cut
⊢α ∧ α, α ∧ α

We select an atomic formula occurrence in the conclusion and start tracing its
history up through the derivation; when we reach an axiom we move to the linked
dual occurrence and start traveling down; when we reach a cut we move to the
corresponding dual occurrence in the other premiss and start moving up again;
we continue doing so until we get back to the conclusion: the graph shall then
contain an edge linking the initial and final points of the resulting path.

The key idea is however not just to track the axioms, but also to avoid
counting them. To understand why this approach might hold promise for a better
treatment of the contraction case, consider the following example:

ax
⊢α, α

····
⊢B,C,C

ctr
⊢B,C

∧
⊢α, α ∧B,C

····
⊢C,C

ctr
⊢C

cut
⊢α, α ∧B

Notice that there is exactly one axiom rule linking the two dual occurences of α
in the conclusion. There are two possible ways to reduce the cut:

ax
⊢α, α

····
⊢B,C,C

ctr
⊢B,C

····
⊢C,C

ctr
⊢C

cut
⊢B

∧
⊢α, α ∧B

ax
⊢α, α

····
⊢B,C,C

ctr
⊢B,C

∧
⊢α, α ∧B,C

ax
⊢α, α

····
⊢B,C,C

ctr
⊢B,C

∧
⊢α, α ∧B,C

····
⊢C,C

cut
⊢α, α ∧B,C

cut
⊢α, α ∧B,α, α ∧B

ctr
⊢α, α ∧B

On the left, the cut has been commuted with the conjunction rule. Axioms in the
new derivation have not changed at all. On the right, the cut has been reduced
into two cuts of lower complexity, and the left subderivation has been duplicated.
There are now clearly more axioms than before, but they link the exact same
subformulas. For example, two axioms now link the dual occurrences of α in the
conclusion, but no new link has been created.

6 F. Massaioli

The question is then whether axiom-induced graphs, being insensitive to
changes in the number of axioms in a derivation, are indeed preserved by all
non-deterministic cut-reduction steps. Lamarche and Straßburger were motivated
by results obtained in the family of formalisms known as Deep Inference, and
while they provided an interpretation of the sequent calculus into B−nets, as far
as we know they didn’t investigate in detail the behaviour of the interpretation
under cut-elimination. Führmann and Pym have proven in [11] – as a general
theorem for a whole class of interpretations of the classical sequent calculus –
that the axiom-induced graphs cannot gain edges under cut-reduction, i.e. that
our intuition that no axioms are created is indeed correct. They also show that
the graphs are preserved by the two logical cut-reduction steps, and it is possible
to prove that they are also invariant under atomic weakening reductions when
the non-deterministic case is solved by the mix rule.

Unfortunately, it turns out they are not preserved by all cut-reduction steps
involving contraction, as there are cases where some paths disappear. The proto-
typical counter-example, also due to Führmann and Pym [11], looks like this:

····
⊢A

···· P

⊢B,A
∧

⊢A ∧B,A

····
⊢B

∧
⊢A ∧B,A ∧B

ctr
⊢A ∧B

ax
⊢A,A

wk
⊢A,B,A

∨
⊢A ∨B,A

ax
⊢B,B

wk
⊢A,B,B

∨
⊢A ∨B,B

∧
⊢A ∨B,A ∨B,A ∧B

ctr
⊢A ∨B,A ∧B

cut
⊢A ∧B

Observe that, under the assumption that the subderivation P have a path con-
necting B with A (represented here as a dotted line), there is in the axiom graph
of the complete derivation a path connecting (some subformula of) A with (some
subformula of) B in the conclusion. When the cut is reduced by duplicating
the right subderivation and commuting it up the two conjunctions, nothing bad
happens. However, if the cut is reduced by duplicating the left subderivation, the
path traced above is lost:

····
⊢A

···· P
⊢B,A

∧
⊢A ∧B,A

····
⊢B

∧
⊢A ∧B,A ∧B

ctr
⊢A ∧B

····
⊢A

···· P
⊢B,A

∧
⊢A ∧B,A

····
⊢B

∧
⊢A ∧B,A ∧B

ctr
⊢A ∧B

ax
⊢A,A

wk
⊢A,B,A

∨
⊢A ∨B,A

ax
⊢B,B

wk
⊢A,B,B

∨
⊢A ∨B,B

∧
⊢A ∨B,A ∨B,A ∧B

cut
⊢A ∨B,A ∧B

cut
⊢A ∧B

We show for clarity only the surviving part of the path that is connected to B.

On the semantics of proofs in classical sequent calculus 7

Note how the new path must end at the weakening rule. The old path depended
critically on the ability to pass through both premises of the contraction rule;
now that the contraction rule has vanished and we have two independent cuts it
becomes impossible to construct the same path.

There is however a better way to look at the same problem. Notice how the
following two derivations are associated to the same axiom graph:

ax
⊢A ∨B,A ∧B

ax
⊢A,A

wk
⊢A,B,A

∨
⊢A ∨B,A

ax
⊢B,B

wk
⊢A,B,B

∨
⊢A ∨B,B

∧
⊢A ∨B,A ∨B,A ∧B

ctr
⊢A ∨B,A ∧B

The peculiarity of this graph is that it is behaves as an identity w.r.t. composition,
i.e. whatever derivation P we may cut against one of the two derivations above,
the resulting graph will be precisely that of P . This is not in the least surprising
in the case of the derivation of the left, which is just an axiom hence an identity
w.r.t. cut-elimination. The situation is different for the derivation on the right,
which is not in general an identity w.r.t. cut-elimination.

The principle expressed by the derivation on the right is the syntactic invert-
ibility of conjunctions, i.e. the fact that any derivation P of the sequent ⊢Γ,A∧B
can be turned into a derivation P ′ of the same sequent whose last rule (up to
some auxiliary contraction on the context) introduces the conjunction A ∧ B.
One way to obtain that result is precisely to cut P with the derivation on the
right, then eliminate the cut by duplicating P and commuting its copies up.

The difficulty with this formulation of the classical sequent calculus is that
it contains derivations of conjunctions whose axiom graph cannot be expressed
by a derivation ending with the conjunction rule. This is precisely the case for
the left subderivation of the counter-example described above. The result of our
analysis suggests the conjecture that drives our methodological approach: either
axiom graphs are the natural semantics of a proof system where the invertibility
of logical rules is a fundamental property, and essentially an identity, or at least
we may hope to solve the problem by moving to such a system and refining the
notion of axiom graph until it becomes invariant under inversion of logical rules.

The sequent calculus GS4 (displayed in fig. 2), both in full and in its cut-free
fragment, is precisely such a system. It is the one-sided presentation of Kleene’s
context-sharing style calculus G4 [21, 18, 35], where independent rule applications
permute freely. It is known that, when the axioms of GS4 are restricted to atomic
conclusions, the set of axioms of any derivation is invariant under arbitrary
permutations of logical rules [29, 27]. The calculus admits an elegant proof of
completeness and enjoys a cut-elimination procedure [30].

One difficulty in adopting GS4 for our investigation is that every provable
sequent has a unique derivation up to permutations of logical rules. This is due to
the fact that weakenings are absorbed into the axioms and sequents are identified

8 F. Massaioli

ax (Γ atomic)
⊢Γ, α, α

⊢Γ,A ⊢Γ,A
cut

⊢Γ

⊢Γ,A,B
∨

⊢Γ,A ∨B

⊢Γ,A ⊢Γ,B
∧

⊢Γ,A ∧B

Fig. 2: The sequent calculus GS4.

up to arbitrary permutations of their elements, hence we lose in general the
ability to tell which pairs of atomic formulas are linked by the axiom:

ax
⊢β, β, α, α =

ax
⊢α, α, β, β

In order to restore that ability we perform two steps (section 2):

– we replace usual formulas with named formulas (definition 1), i.e. formulas
where each atomic formula occurrence is assigned a distinct name:

αx ∨ (βy ∧ αz).

It is a tedious but unfortunately necessary technical detail, as it is the only
way keep track of the history of each occurrence through the derivation;3

– we enrich the calculus with a deterministic axiom and a superposition rule:

ax{αx,αy}⊢Γ, αx, αy
⊢Γ ⊢Γ

⊔
⊢Γ

We additionally allow the use of non-atomic axioms, which are interesting in
that they greatly reduce the size of derivations; this makes reasoning about the
calculus a bit more complicated, but it provides us with a nice proof of derivability
of the contraction rule (section 3.1).

Deterministic axioms allow us to recover the standard form that axioms have
in calculi with explicit structural rules without losing the benefits of axioms with
embedded weakenings. They essentially provide a way to tell which formulas in
the context come from a weakening, and which ones do not. Observe that this
is not a trivial addition to GS4: the complexity of checking the correctness of
standard axiom rule applications ranges from linear to quadratic in the size of
the context, while for deterministic axioms it ranges from sub-linear to linear.

The superposition rule is an adaptation of the mix-rule to the context-sharing
framework. The shape of the rule is reminiscent of the non-deterministic sums
discussed earlier, but its behaviour under cut-elimination is, as we shall see, closer
3 The alternative is the sequents-as-lists approach, which requires no modification

whatsoever to the calculus, but makes reasoning on proof transformations exceedingly
complicated because of the need to insert exchange rules everywhere.

On the semantics of proofs in classical sequent calculus 9

to that of the mix-rule. We choose to adopt a non-standard name for the rule to
remark this fact and avoid confusion.

In section 3 we recall the main results about the invertibility of logical rules
in GS4, and introduce some related notation. We slightly depart from standard
terminology in that we speak of inversion when recovering derivations of the
premises of a logical rule, while we speak of isolation when permuting rule
applications to the bottom of the derivation. The two properties are provably
equivalent, hence they often receive the same name. In our case, however, we
needed a way to distinguish the two operations.

We are then able to formalize the axiom graph construction on the enriched
calculus (section 4, definition 9) and show the remarkable fact that axiom
graphs are preserved under inversion of logical rules in the cut-free fragment
(proposition 2). The full calculus on the other hand fails to satisfy the same
property; two counter-examples are provided in figs. 4 and 5 and discussed in
section 4.2.

This motivates us to seek a refinement of the axiom graph construction. The
main problem identified in section 4.2 is that the composition operator for axiom
graphs might join edges which occur in incompatible branches of the derivation,
i.e. branches that prove distinct conjuncts of some conjunction occurring in the
conclusion. Thus a path is obtained which provably cannot exist in a cut-free
derivation.

Our solution is to enrich axiom graphs with labels tracking for each edge the
branch it came from: we are then able to define a branch-sensitive composition
operator (definition 13). We develop the refinement in section 5, then show in
section 6.1 that the new construction is invariant under inversion of logical rules
in the full fragment of the calculus (theorem 2).

Unfortunately, the refined axiom graphs are no longer preserved by the
standard logical cut-reduction steps (as defined e.g. in [30]). The reasons are
subtle, we discuss them briefly along with possible solutions in section 8.

We then put our hand to developing a new normalization procedure that
preserves the refined axiom graphs. Naturally, invertibility is at the core of the
procedure (described in the proof of theorem 3), which exploits it to permute all
cuts up the derivation until they are reduced to atomic contexts, i.e. they are of
the form

⊢Γ,A ⊢Γ,A
cut

⊢Γ

where Γ contains only atomic formulas, while A may be arbitrarily complex.
The lack of a proper cut-reduction procedure (section 8) forces us to proceed
from this point with a normalisation-by-evaluation argument, i.e. we show that
whenever the graph of a derivation is not empty, there is a cut-free derivation of
the same conclusion and associated to the same graph.

Such a result was essentially already available in [25]. We manage to restrict
the need for this kind of argument to the significantly simpler case of cuts
with atomic context between cut-free derivations. Nonetheless the main lemma
(lemma 14, a kind of graph-based cut-admissibility result) still requires a very

10 F. Massaioli

complex proof (provided in appendix G) which a proper cut-reduction procedure,
if available, would simplify greatly.

Finally, we provide in section 7 a direct characterisation of the class of axiom
graphs that come from GS4 derivations. The resulting condition, which we call
totality, is analogous to the correctness criterion of [25] and provides a kind of
sequentialization theorem theorem 4. We exploit this fact to devise a classical
proof system (which we call BLG) optimized for invertibility, in the sense that
the inversion procedures become immediate and the isolation procedures are just
identities. Proofs in BLG have the following shape:

αx, βz, αv, γw αx, γu, αv, γw β
y
, βz, αv, γw β

y
, γu, αv, γw

⊢αx ∧ β
y
, βz ∧ γu, αv ∨ γw

i.e. a set of atomic decompositions of the conclusion together with a graph
providing the axiom links. All GS4 rules, including the cut-rule, are admissible
in BLG.

It is important to stress how BLG is different from the B-nets of [25], apart from
disallowing some proofs. The question of whether a certain formalism provides a
proof system for propositional classical logic is delicate. Because propositional
tautologies are decidable in exponential time in the size of the formula, it has
been argued (e.g. in [8, 20]) that correctness criteria for proofs should have
significantly lower complexity. In particular, Cook and Reckhow argue in [8] that,
as a minimal requirement, proofs should be checkable in polynomial time for
some adequate notion of proof size.

B-nets notoriously failed to be a proof system in this sense: the only known
correctness criterion is exponential in the size of the proof object, which is itself
polynomially bounded by the size of the conclusion; moreover, Das showed that
the existence of a polynomial time correctness criterion for Andrews’ matings [2]
or for B-nets would imply NP = coNP.

The situation is different for BLG, where we are able to argue (quite informally)
that correctness is checkable in polynomial time in the size of proof objects
(proposition 5). The idea is that a correctness check amounts to constructing a GS4

derivation of the same conclusion, then check that the decomposition provided
by the BLG proof object matches the one obtained through GS4. Crucially, it is
possible to construct the derivation one branch at a time and thus check the
correctness of the decomposition incrementally: we are then able to show that
the number of required steps is polynomially bounded by the size of the BLG

proof object.

2 Tracking atom occurrences

Let us fix a countably infinite set N of names and an arbitrary set A of proposi-
tional atoms, together with a fixpoint-free involution

(·) : A → A

On the semantics of proofs in classical sequent calculus 11

i.e. a map such that α ̸= α and α = α for all atoms α ∈ A: this means that atoms
come in pairs symmetrically related by the involution. We use letters x, y, z, . . .
to range over N and greek letters α, β, γ, . . . to range over A.

Definition 1 (Named formulas). The set F of classical propositional formu-
las is defined by the grammar

F,G ::= α | F ∨G | F ∧G

where α ∈ A. Named formulas are formulas where every occurrence of a proposi-
tional atom is assigned a name from the set N . Formally, we define the set FN

of formulas with names in N by the grammar

A,B ::= αx | A ∨B | A ∧B

where α ∈ A and x ∈ N . Call (possibly named) formulas of the form α (resp. αx)
atomic. Each named formula A ∈ FN is naturally associated to the anonymous
formula |A| ∈ F obtained by forgetting all names. Write A ≡ B iff |A| = |B|, i.e.
if A and B are identical up to a change of names.

We define as usual an involution (·) : F → F (resp. (·) : FN → FN) over
propositional formulas and named formulas, expressing negation through De
Morgan’s duality:

(α) = α F ∨G = F ∧G F ∧G = F ∨G;

(αx) = αx A ∨B = A ∧B A ∧B = A ∨B.

Definition 2 (Named sequents). Named classical propositional sequents
are expressions of the form ⊢Γ,⊢∆, . . . where Γ,∆, . . . are finite sets of named
formulas. Write Γ ≡ ∆ (resp. (⊢Γ) ≡ (⊢∆)) if sets Γ,∆ (resp. sequents ⊢Γ,⊢∆)
are identical up to a change of names, formally if there is a bijection ϕ : Γ → ∆
such that A ≡ ϕA for all A ∈ Γ .

For every named formula A ∈ FN , let names(A) denote the set of all names
occurring in A, with the obvious inductive definition. The definition extends
easily to sets and named sequents by taking unions over all their members, i.e.

names(Γ) = names(⊢Γ) =
⋃
A∈Γ

names(A),

where Γ is any finite set of named formulas.

Definition 3 (Sharing-free formulas, sets, sequents). Say that named
formulas A,B (resp. sets Γ,∆ of formulas, sequents ⊢Γ,⊢∆) share names if
their name sets overlap (i.e. have non-empty intersection), otherwise say that
they share no names; in the case of formulas we may also say that they are
disjoint, while we shall not use this terminology with sets and sequents to avoid
confusion with the set-theoretical meaning of the term.

12 F. Massaioli

Call a named formula A sharing-free if each name appears at most once in A;
formally, by structural induction, if either A is atomic or it is of the form B ∨C,
B∧C where B,C are disjoint and themselves sharing-free. Call a set Γ of named
formulas sharing-free if all formulas in Γ are sharing-free and pairwise disjoint.
Call a sequent ⊢Γ sharing-free iff so is the set Γ .

Definition 4 (Atom indexing notation). Let A (resp. Γ) be a sharing-free
named formula (resp. set of named formulas). By definition 3 there is for each
name x ∈ names(A) (resp. names(Γ)) a unique atom α ∈ A such that αx is a
subformula of A (resp. of Γ). We write A[x] (resp. Γ [x]) to denote that unique α.

Note that negation preserves names when applied to named formulas, hence for
all A ∈ FN we have names(A) = names(A), and A[x] = A[x] for all x ∈ names(A).

From now on we are going to assume that all named formulas and sequents
be sharing-free. As a consequence, when writing down sequents through the
customary comma notation:

⊢Γ,A,B,∆, . . .

we shall assume implicitly that every pair of comma-separated components share
no names. Observe that disjoint formulas are necessarily distinct, and therefore
any pair of sets of named formulas sharing no names must also be disjoint in
the set-theoretical sense. In particular, in the example above, Γ,∆ are disjoint,
A /∈ Γ , and so on. . .

Remark 1. While named sequents are defined as sets, because of the presence of
names this is by no means equivalent to the standard sequents-as-sets approach:
for example, the sequent

⊢αx∧ βy, αz∧ βw

contains two occurrences of the same anonymous formula, distinguished by their
names. In other words, stripping named sequents of all names results in multisets
of formulas.

We now redefine the usual GS4 sequent system using named sequents in
place of traditional ones. As announced before, we also enrich the system with
deterministic axioms and a superposition rule.

Definition 5. Named GS4 derivations are finite trees whose nodes (also called
rule applications) are labeled by an inference rule and by a sharing-free named
sequent (called conclusion of the rule), inductively constructed in accordance with
the following rules:

– identity rules:

ax{A,B}⊢Γ,A,B

⊢Γ,A ⊢Γ,A
cut

⊢Γ

where A ≡ B;

On the semantics of proofs in classical sequent calculus 13

– superposition rule:
⊢Γ ⊢Γ

⊔
⊢Γ

– logical rules:
⊢Γ,A,B

∨
⊢Γ,A ∨B

⊢Γ,A ⊢Γ,B
∧

⊢Γ,A ∧B

Let GS4N denote the set of all named derivations; we use letters P,Q,R, . . . to
range over GS4N . We let names(P) denote the set of all names occurring in some
formula in P .

Remark 2. The peculiar form of axiom rules is due to the fact that the pairs of
formulas they relate must share no names: because named formulas A and A
share the same names, the conclusion of an hypothetical derivation tree of the
form

ax{A,A}⊢Γ,A,A

would not be sharing-free, as required by definition 5.

Correctness, completeness and cut admissibility results apply as usual: by
forgetting names one obtains a sound proof in the negative presentation of
sequent calculus as a tree of multisets of formulas, while completeness and cut
admissibility can be obtained either by adding names to anonymous proofs, or
more easily by a straightforward adaptation of Schutte’s completeness proof
(see [31, 1]).

3 Inversion and isolation of logical rules

The foremost property of GS4N derivations is the invertibility of all logical
inference rules. As is well-known, the reason why they are called invertible is
not just that their conclusions logically entail their premises; in fact, a stronger
property holds: each derivation P of ⊢Γ,A with A non-atomic may be rewritten
in such a way as to recover derivations in the context Γ of each premiss of the
logical rule introducing A. We call this rewriting step inversion. One may then
apply the logical rule again to obtain a derivation P ′ of ⊢Γ,A where the last rule
application introduces A: we say that P ′ has been obtained by isolating A in P .
We state below the relevant facts and introduce some notation; the rewriting
procedures are described in detail in appendix C.

Lemma 1. For each derivation P ∈ GS4N with conclusion ⊢Γ,A ∨B, there is
a derivation inv(P,A ∨B) ∈ GS4N with conclusion ⊢Γ,A,B, cut-free if so is P .

Corollary 1. For each derivation P ∈ GS4N with conclusion ⊢Γ,A ∨B, there
is a derivation isl(P,A ∨B) ∈ GS4N with the same conclusion, cut-free if so is
P , and whose last rule application introduces A ∨B.

14 F. Massaioli

Proof. Let isl(P,A ∨B) be the derivation

···· inv(P,A ∨B)

⊢Γ,A,B
∨

⊢Γ,A ∨B

Lemma 2. For each derivation P ∈ GS4N with conclusion ⊢Γ,A ∧B, there is
a derivation invl(P,A ∧B) ∈ GS4N with conclusion ⊢Γ,A, cut-free if so is P .

Lemma 3. For each derivation P ∈ GS4N with conclusion ⊢Γ,A ∧B, there is
a derivation invr(P,A ∧B) ∈ GS4N with conclusion ⊢Γ,B, cut-free if so is P .

Corollary 2. For each derivation P ∈ GS4N with conclusion ⊢Γ,A ∧B, there
is a derivation isl(P,A ∧B) ∈ GS4N with the same conclusion, cut-free if so is
P , and whose last rule application introduces A ∧B.

Proof. Let isl(P,A ∧B) be the derivation

···· invl(P,A ∧B)

⊢Γ,A

···· invr(P,A ∧B)

⊢Γ,B
∧

⊢Γ,A ∧B

3.1 Admissibility of contraction and weakening

Lemma 4. For each derivation P ∈ GS4N with conclusion ⊢Γ and sharing-free
set ∆ of named formulas such that Γ,∆ share no names, there is a derivation
wk(P,∆) ∈ GS4N with conclusion ⊢Γ,∆, cut-free if so is P .

The contraction rule is derivable through the use of cuts, and therefore
admissible: ···· P

⊢Γ,A,B
ax{A,B}⊢Γ,A,B
cut

⊢Γ,A

(A ≡ B)

On the other hand, the weakening rule is not derivable because of the way the
cut rule is formulated in GS4 (i.e. with context sharing).

4 Axiom graphs

We are now ready to formalize the idea of axiom-induced graphs. We shall rely
on a standard notion of simple graph: the related notation and properties are
summarized in appendix A. We start from the notion of name graph, i.e. a simple
graph whose vertex set is a subset of the set N of names. We associate a name
graph to each derivation; following the intuitions given in the introduction, only
axioms and cuts will receive a special treatment, while all other rules shall be
interpreted trivially by graph unions.

On the semantics of proofs in classical sequent calculus 15

Definition 6 (Weakening and identity graphs). For any sharing-free set
Γ of named formulas, let WkΓ denote the graph

WkΓ = ⟨names(Γ), ∅⟩

whose vertices are the names occurring in Γ and whose edge set is empty. We
call WkΓ the edgeless or weakening graph on Γ .

For any pair A,B of disjoint and sharing-free named formulas such that
A ≡ B, we define by induction on the height4 of A the graph Id{A,B}:

Id{αx,αy} = ⟨{x, y}, {xy}⟩;

Id{A1∨A2,B1∧B2} = Id{A1∧A2,B1∨B2} = Id{A1,B1} ⊔ Id{A2,B2}.

We call Id{A,B} the identity graph on A,B. It is easy to check by induction on A

that VId{A,B}
= names({A,B}).

In order to interpret cuts, we need to implement the informal idea of paths
alternating between the two cut subderivations through the cut-formula. The
implementation is independent of the logical framework and can be specified
directly in terms of name graphs:

Definition 7 (Alternating paths). Let G,H be arbitrary name graphs, I ⊆ N
a set of names called interface. Furthermore, let x1, . . . , xn ∈ VG ∪ VH be a
sequence of pairwise distinct vertices from G,H (for some n > 0), and let ei
denote the unordered pair xixi+1 for all 1 ≤ i < n.

x1, . . . , xn is an alternating path between G and H through the interface I
if and only if

(i) xi ∈ I for all 1 < i < n (those we call internal vertices of the path);
(ii) either ei ∈ EG for all odd 1 ≤ i < n and ei ∈ EH for all even 1 ≤ i < n, or

ei ∈ EH for all odd 1 ≤ i < n and ei ∈ EG for all even 1 ≤ i < n.

In other words, alternating paths are built by choosing ‘adjacent’ edges
alternately in G and H or vice versa, under the restriction that all vertices except
the first and the last be in the interface. Observe that cycles are ignored – since
vertices in the path are required to be pairwise distinct – hence when G and H
are finite, there are for any given interface only finitely many alternating paths
between them.

Definition 8 (Composition of name graphs). Given name graphs G,H and
a set of names I ⊆ N , we define the composite of G and H on interface I as the
graph

G⊙I H = ⟨V,E⟩
where

V = (VG ∪ VH) \ I
and for all x ̸= y ∈ V , xy ∈ E if and only if there is an alternating path z1, . . . , zn
between G and H through the interface I such that z1 = x and zn = y.
4 Which is necessarily identical to the height of B, see definition 23 from appendix B.

16 F. Massaioli

From now on, given any name graphs G,H and a named formula A, we may
write G⊙A H as a shorthand for G⊙names(A) H.

Definition 9 (Axiom graphs). To each derivation tree P ∈ GS4N we associate
a named graph JP K, called axiom graph of P , defined by structural induction
on P :

– if P has the form
ax{A,B}⊢Γ,A,B

where A ≡ B, then let JP K = WkΓ ⊔ Id{A,B};
– if P has the form

···· Q

⊢Γ,A

···· R

⊢Γ,A
cut

⊢Γ

then let JP K = JQK ⊙A JRK;
– if P has the form

···· Q1

⊢Γ1 · · ·

···· Qn

⊢Γn
r

⊢Γ

where r ∈ {⊔,∨,∧}, then let JP K = JQ1K ⊔ . . . ⊔ JQnK.

Proposition 1. For all derivations P ∈ GS4N with conclusion ⊢Γ ,

VJP K = names(Γ).

4.1 Axiom graphs do not increase under inversion and isolation

Theorem 1. Let P ∈ GS4N be any named derivation tree with conclusion ⊢Γ,A,
where A is any non-atomic named formula: then

Jisl(P,A)K ⊑ JP K.

From now on, and especially in the statements and proofs of the following
lemmas, we shall write expressions of the form JP K↾Γ,A as a shorthand for
JP K↾names(Γ,A) (see definition 21 for the subgraph relation and the graph restriction
notation). All omitted proofs can be found in appendix E.

Lemma 5. For all derivations P ∈ GS4N with conclusion ⊢Γ,A ∨B,

Jinv(P,A ∨B)K = JP K.

Lemma 6. For all derivations P ∈ GS4N with conclusion ⊢Γ,A ∧B,

Jinvl(P,A ∧B)K ⊑ JP K↾Γ,A and Jinvr(P,A ∧B)K ⊑ JP K↾Γ,B ;

Proof of theorem 1. Immediate consequence of lemmas 5 and 6 together with
the definition of the isl-transformation (corollaries 1 and 2). The result may
also be seen as a very specific instance of a more general one by Führmann and
Pym [11].

On the semantics of proofs in classical sequent calculus 17

4.2 Axiom graphs are not invariants of isolation and normalisation

The inequality from theorem 1 can be upgraded to an equality in the case of
cut-free proofs:

Proposition 2. For all cut-free derivations P ∈ GS4N of the sequent ⊢Γ,A with
A non-atomic,

Jisl(P,A)K = JP K.

On the other hand, the invariance result does not hold in the case of proofs
with cuts, as there are derivations whose axiom graph decreases strictly under
isolation of some conjunction in their conclusions. Figure 4 shows one such
counterexample, where there is an alternating path (marked in blue in fig. 4a)
that is lost as soon as the conjunction in the conclusion is isolated, as shown
in fig. 4b.

The unstable path in fig. 4 is precisely the one that connects names occurring
on the two distinct sides of a conjunction: in fact, it is possible to prove that no
such edge may exist in a cut-free derivation, hence the axiom graph construction
cannot be invariant under cut-elimination.

One might be tempted to modify the construction so that conjunction-crossing
paths be erased as soon as possible; this, however, is not enough to guarantee
invariance under isolation. Figure 5 shows a more complex example where an
alternating path is lost, whose endpoints are not separated by a conjunction. The
problem in this case is that the disappearing path contains edges coming from
subderivations of both conjuncts of a conjunction that appears in the conclusion.
As soon as the conjunction is isolated (fig. 5b), it becomes impossible to construct
such a path.

5 Branch-labeled axiom graphs

Our solution is to refine the axiom graph construction by attaching labels to
each edge, whose purpose is to track the branches each edge came from in the
interpreted derivation. We do this by replacing the edge set with a relation
associating sets of names (representing branches of derivations) to unordered
pairs of vertices (representing unoriented edges). Every edge must come from some
branch: if some pair of vertices has no associated name set, then we consider there
to be no edge between the two vertices. We then use the additional information to
discard alternating paths composed by edges belonging to incompatible branches.

5.1 Naming branches

It is a well-known fact [27, 29] that when the axiom rule is restricted to atomic
conclusions, the set of axiom rule conclusions (also called top-sequents) of any
given GS4 derivation is uniquely determined by the conclusion of the derivation.
For obvious reasons, every branch is terminated by a unique axiom-rule application
and can then be named by its conclusion – in fact it is sufficient to consider the

18 F. Massaioli

set of names that occur in the leaf’s conclusion. In the presence of superposition
rules the naming will not be unique, but this is not a problem as identically
named branches can be collapsed into one by reducing superpositions to atomic
form.

In order to ensure that branch names be stable under isolation, we need
to take into account the possible expansions of non-atomic axioms: branches
terminated by such rule applications correspond in fact to multiple “virtual”
atomic branches, still uniquely determined by the leaf’s conclusion. We need then
to define the unique set Br(Γ) of atomic branch names determined by a given
sequent ⊢Γ . One possible approach – followed e.g. in [29] – is to rely upon GS4

inference rules to obtain the unique atomic decomposition of the sequent; we
prefer however to provide a direct characterisation of the set Br(Γ), then show
that it is compatible with the inference rules.

Definition 10 (Formula and sequent branches). We associate inductively
a set of branch names to each sharing-free named formula A as follows:

– Br(αx) = {{x}};
– Br(B ∨ C) = {X ∪ Y | X ∈ Br(B), Y ∈ Br(C)};
– Br(B ∧ C) = Br(B) ∪ Br(C);

then let, for all sharing-free sets Γ of named formulas,

Br(Γ) = {X ⊆ names(Γ) | ∀A ∈ Γ. (X ∩ names(A)) ∈ Br(A)}.

The construction for sets is meant to treat them as generalized disjunctions
over their elements. While syntactic binary disjunction distinguishes between a
left and a right subformula, elements of a set have no preferred ordering, hence
the need for a slightly less straightforward definition. We provide for clarity
an alternative characterisation of Br(Γ) (as usual we provide detailed proofs in
appendix F):

Lemma 7. Let Γ be any sharing-free set of named formulas. For any branch
name X ⊆ N , X ∈ Br(Γ) if and only if there is a family (XA)A∈Γ of branch
names such that X =

⋃
A∈Γ XA, with XA ∈ Br(A) for all A ∈ Γ .

Lemma 8. Let Γ,∆ be sharing free sets of named formulas that share no names:
then

Br(Γ ∪∆) = {X ∪ Y | X ∈ Br(Γ), Y ∈ Br(∆)}.
Corollary 3. Br(Γ) = {X \ names(∆) | X ∈ Br(Γ ∪∆)}.

It is an easy consequence of lemma 7 that Br({A}) = Br(A). Therefore, from
this point on we are going to abuse systematically the usual sequent notation
and write, e.g., Br(Γ,A,∆) for Br(Γ ∪ {A} ∪∆).

Proposition 3. Let Γ be any sharing-free set of named formulas, A,B disjoint
and sharing-free named formulas that share no name with Γ :

(i) if all formulas in Γ are atomic, then Br(Γ) = {names(Γ)};
(ii) Br(Γ,A ∨B) = Br(Γ,A,B);
(iii) Br(Γ,A ∧B) = Br(Γ,A) ∪ Br(Γ,B);
(iv) Br(Γ,A) and Br(Γ,B) are disjoint.

On the semantics of proofs in classical sequent calculus 19

5.2 Branch-labeled name graphs

Definition 11. A branch-labeled name graph is a pair G = ⟨VG,�G⟩ where
VG ⊆ N is a set of names and

�G ⊆
(
VG

2

)
× P(VG)

is a binary relation between unordered pairs of vertices and arbitrary sets of
vertices of G, such that

e �G X =⇒ e ⊆ X. (⋆)

For G any branch-labeled name graph (hereinafter bl-graph for brevity), we
can define a set

EG = πl(�G) = {e | ∃X. e �G X}

of unordered pairs of vertices which we shall call the edges of G. We define
similarly the set of branches of G:

Br(G) = πr(�G) = {X | ∃e. e �G X}.

We read the predicate xy �G X as x, y are adjacent in branch X, or branch X
has the edge xy. Condition (⋆) ensures that edges only connect vertices belonging
to the branch they originated in.

We extend the subgraph relation and the union operator to bl-graphs simply
by replacing the edge set with the edge-branch relation in the definition, i.e. let

G ⊑ H ⇐⇒ VG ⊆ VH and �G ⊆ �H

for all pairs G,H of bl-graphs, and⊔
i∈I

Gi = ⟨
⋃
i∈I

VGi
,
⋃
i∈I

�Gi
⟩

where I is any index set and (Gi)i∈I an indexed family of bl-graphs. The restriction
operator must be modified slightly so as to select branches instead of edges: for G
any bl-graph and X ⊆ N , let

G↾X = ⟨VG ∩X, {(e, Y) ∈ �G | Y ⊆ X}⟩.

Note that while union acts upon edges in the usual way (we have EG⊔H =
EG∪EH), restriction might remove more edges than in the case of simple graphs:
for all e ∈ EG, e ∈ EG↾X implies e ⊆ X, but the converse does not hold in
general.

5.3 Branch-sensitive composition

We come thus to the crux of the refined approach – the composition of bl-graphs
over some interface. Remember that composition is meant to interpret cuts

20 F. Massaioli

between derivations P,Q of conclusion ⊢Γ,A and ⊢Γ,A respectively, with the
cut rule having conclusion ⊢Γ . We start then with atomic branch sets Br(Γ,A),
Br(Γ,A), while the branch set of the final cut-free derivation will be Br(Γ). When
constructing alternating paths, we are going to use edges which come in general
from different branches in P,Q, but we need to ensure that they all belong to
the same branch of the cut-free derivation, otherwise they might disappear under
isolation.

To this end, observe that by lemma 8 all branches X ∈ Br(Γ,A) (resp. Br(Γ,A))
are of the form Y ∪Z where Y ∈ Br(Γ) and Z ∈ Br(A) (resp. Br(A)). Therefore,
we have X \ names(A) = X \ names(A) ∈ Br(Γ) (corollary 3). The idea is then
to check that all edges forming an alternating path share the same branch label
up to names in the composition interface.

For any bl-graph G and set I ⊆ N of names, we define an interface-relativized
edge-branch relation

�I
G = {(e,X \ I) | e �G X},

or equivalently

e �I
G X ⇐⇒ ∃Y. e �G Y and X = Y \ I.

Definition 12 (Alternating labeled paths). Let G,H be arbitrary bl-graphs,
I,X ⊆ N sets of names, x1, . . . , xn ∈ VG ∪ VH a sequence of pairwise distinct
vertices from G,H (with n > 1), and let ei denote the unordered pair xixi+1 for
all 1 ≤ i < n.

x1, . . . , xn is an alternating X-labeled path between G and H through the
interface I if and only if

(i) xi ∈ I for all 1 < i < n (all internal vertices belong to the interface);
(ii) either ei �I

G X for all odd 1 ≤ i < n and ei �I
H X for all even 1 ≤ i < n, or

ei �I
H X for all odd 1 ≤ i < n and ei �I

G X for all even 1 ≤ i < n.

We call the path complete iff x1, xn /∈ I.

Lemma 9. If z1, . . . , zn is a complete X-labeled alternating path between bl-
graphs G,H through interface I, then z1, zn ∈ X.

Proof. By definition 12 n > 1, hence there is K ∈ {G,H} and Y ∈ Br(K) such
that z1z2 �K Y with X = Y \ I. By definition 11 z1z2 ⊆ Y , and because z1 /∈ I
by hypothesis, we must have z1 ∈ X. Similar reasoning shows that zn ∈ X.

Definition 13 (Composition of bl-graphs). Let G,H be arbitrary bl-graphs,
I ⊆ N a set of names. We define the composite of G and H on interface I as
the bl-graph

G⊙I H = ⟨V,�⟩
where

V = (VG ∪ VH) \ I
and for all x ̸= y ∈ V and X ⊆ V , xy � X if and only if there is a complete
alternating X-labeled path z1, . . . , zn between G and H through the interface I,
such that z1 = x and zn = y. Lemma 9 guarantees that xy ⊆ X.

On the semantics of proofs in classical sequent calculus 21

5.4 Interpreting derivations

Finally, we define the new inductive interpretation function for derivations. Special
attention must be paid to the weakening case: it is not possible to handle it by a
simple graph union, like in the original axiom graph construction, as we need to
update all branch labels to take weakened formulas into account. Weakenings
are then interpreted by an operator on bl-graphs. Identities also need to be
tweaked to account for the way non-atomic axioms are expanded by the inversion
procedures.

Definition 14 (Weakening and identities). For any bl-graph G and sharing-
free set Γ of named formulas, let

WkblΓ (G) = ⟨VG ∪ names(Γ), {(e,X ∪ Y) | e �G X, Y ∈ Br(Γ)}⟩.

For any pair A,B of disjoint and sharing-free named formulas such that A ≡ B,
we define by induction on the height of A the bl-graph Idbl{A,B}:

Idbl{αx,αy} = ⟨{x, y}, {(xy, {x, y})}⟩;
Idbl{A1∨A2,B1∧B2}

= WkblA2
(Idbl{A1,B1}

) ⊔ WkblA1
(Idbl{A2,B2}

).

Definition 15 (Branch-labeled axiom graphs). To each derivation tree P ∈
GS4N we associate a bl-graph LP M, called branch-labeled axiom graph of P , defined
by structural induction on P : if P has the form

ax{A,B}⊢Γ,A,B

where A ≡ B, then let LP M = WkblΓ (Idbl{A,B}); as for simple axiom graphs, cuts are
interpreted by composition and all other rules by taking the bl-graph union over
their subderivations.

Proposition 4. For all derivations P ∈ GS4N with conclusion ⊢Γ ,

VLP M = names(Γ) and Br(LP M) ⊆ Br(Γ).

6 Main results

6.1 Behaviour under inversion and isolation

Theorem 2. For all derivations P ∈ GS4N with conclusion ⊢Γ,A, where A is
any non-atomic named formula,

Lisl(P,A)M = LP M.

The proof of theorem 2 rests upon the following three lemmas, whose proofs
are detailed in appendix F.

22 F. Massaioli

Lemma 10. For all derivations P ∈ GS4N with conclusion ⊢Γ,A ∨B,

Linv(P,A ∨B)M = LP M.

Lemma 11. For all derivations P ∈ GS4N with conclusion ⊢Γ,A ∧B,

Linvl(P,A ∧B)M = LP M↾Γ,A and Linvr(P,A ∧B)M = LP M↾Γ,B ;

Lemma 12. For all derivations P ∈ GS4N with conclusion ⊢Γ,A ∧B,

LP M = LP M↾Γ,A ∪ LP M↾Γ,B .

Proof of theorem 2. Immediate by lemma 10 if A is a disjunction. If instead A =
B ∧ C is a conjunction, we have by construction5

Lisl(P,A)M = Linvl(P,A ∧B)M ⊔ Linvr(P,A ∧B)M

and then by lemmas 11 and 12

Linvl(P,A ∧B)M ⊔ Linvr(P,A ∧B)M = LP M↾Γ,B ⊔ LP M↾Γ,C = LP M.

6.2 Cut-elimination theorem

Theorem 3. For all derivations P ∈ GS4N with conclusion ⊢Γ , there is a
cut-free derivation Q ∈ GS4N with conclusion ⊢Γ and such that LP M = LQM.

Since we lack a cut-reduction procedure compatible with the interpretation,
we have to prove theorem 3 through a normalisation-by-evaluation argument,
where we first compute the interpretation of the derivation, then reconstruct a
cut-free derivation with the same interpretation.

However, thanks to theorem 2, we can employ the isolation procedure to
commute cuts up the derivation until they are reduced to atomic contexts. We are
thus able to limit the need for evaluation to the very specific and much simpler
case of quasi-cut-free derivations6 with atomic conclusion.

The proof then looks like a standard cut-elimination argument, with a lemma
for the quasi-cut-free case and a final general argument by induction on the
height of the derivation. We start with a kind of semantic cut-admissibility result.
All omitted proofs are provided as usual in appendix F, except that of lemma 14
to which we devote the whole of appendix G because of its complexity.

Lemma 13. Let P ∈ GS4N be any derivation with conclusion ⊢Γ . All edges
in LP M link dual atom occurrences, i.e. for all xy ∈ ELP M we have Γ [x] = Γ [y].

Lemma 14 (Semantic cut-admissibility). Let P,Q ∈ GS4N be cut-free
derivations with conclusion ⊢Γ,A and ⊢Γ,A respectively, where all elements of
the context Γ are atomic formulas. Then the composite bl-graph LP M ⊙A LQM has
at least one edge.
5 See the proof of corollary 2.
6 I.e., those formed by cutting together two cut-free derivations

On the semantics of proofs in classical sequent calculus 23

Lemma 15 (Normalisation by evaluation). Let P,Q ∈ GS4N be cut-free
derivations with conclusion ⊢Γ,A and ⊢Γ,A respectively, where all elements of
the context Γ are atomic formulas. There is a cut-free derivation R ∈ GS4N with
conclusion ⊢Γ and such that LRM = LP M ⊙A LQM.

Proof. For brevity, let G = LP M⊙A LQM. Observe that the vertex set of G is finite
by proposition 4, hence G has finitely many edges. Moreover, Br(G) ⊆ Br(Γ) =
{names(Γ)} (proposition 3), i.e. all edges have the same branch label names(Γ).
Finally, by lemma 13 and the assumption that Γ is atomic, there are for all
edges xy ∈ EG named formulas αx, αy ∈ Γ where α = Γ [x] and α = Γ [y].

Now let |EG| denote the number of edges in G: by lemma 14 we know that
|EG| > 0. We construct the derivation R by induction on n:

– if |EG| = 1, then there is a unique edge xy ∈ EG: let α = Γ [x], and let R be
the derivation

ax{αx,αy}⊢Γ

– if |EG| > 1, then there is at least one edge xy ∈ EG and we can decompose
G as G′ ⊔G′′, where

G′ = ⟨VG, {(xy, names(Γ))}⟩ and G′′ = ⟨VG,�G \ {(xy, names(Γ))}⟩.

We have obviously |EG′ |, |EG′′ | < |EG|, hence there are by induction hy-
pothesis derivations R′, R′′ with conclusion ⊢Γ and such that LR′M = G′,
LR′′M = G′′: let then R be the derivation

···· R′

⊢Γ

···· R′′

⊢Γ
⊔

⊢Γ

Readers may check easily – using the facts recalled above – that LRM = G, as
required.

We come finally to the general cut-elimination proof, but first we must handle
an important technical detail. Because the isolation procedure might expand
axioms, it does not preserve in general the height of the derivation, hence we
cannot proceed by induction on that measure. We define instead an alternative
measure called virtual height, which provides an upper bound to the height that
may be attained by expanding the axioms, and therefore does not increase under
isolation:

Definition 16. For any derivation P ∈ GS4N with conclusion ⊢Γ ,

– if P ends with an axiom rule application, let vh(P) = 1 + deg(Γ) (defini-
tion 24);

24 F. Massaioli

– otherwise P has the form

···· P1

⊢Γ1 · · ·

···· Pn

⊢Γn
r

⊢Γ

where r ∈ {cut,⊔,∨,∧}: let then vh(P) = 1 +maxni=1 vh(Pi).

Lemma 16. Let P ∈ GS4N be any derivation with conclusion ⊢Γ,A where A is
non-atomic; then vh(isl(P,A)) ≤ vh(P).

Proof of theorem 3. If P is cut-free, let Q = P . Otherwise, proceed by induction
on the virtual height of P :

– if P has the form
···· P1

⊢Γ1 · · ·

···· Pn

⊢Γn
r

⊢Γ

where r ∈ {⊔,∨,∧}, then apply the induction hypothesis to P1, . . . , Pn to
get cut-free derivations Q1, . . . , Qn with the same conclusion as P1, . . . , Pn

respectively, and let Q be the cut-free derivation

···· Q1

⊢Γ1 · · ·

···· Qn

⊢Γn
r

⊢Γ

We have LQiM = LPiM for all 1 ≤ i ≤ n and therefore LQM =
⊔n

i=1LQiM =⊔n
i=1LPiM = LP M, as required;

– if P has the form
····

⊢Γ,B,A

····
⊢Γ,B,A

cut
⊢Γ,B

where B is non-atomic, there is a derivation P ′ = isl(P,B) of the form

···· P ′
1

⊢Γ1 · · ·

···· P ′
n

⊢Γn
r

⊢Γ,B

where the last rule application r ∈ {∨,∧} introduces the formula B, and
such that LP ′M = LP M (theorem 2) and vh(P ′) ≤ vh(P) (lemma 16): we can
then apply the induction hypothesis to the P ′

i and proceed as in the previous
case to get a cut-free derivation Q such that LQM = LP ′M = LP M;

On the semantics of proofs in classical sequent calculus 25

– finally, if P has the form

···· P1

⊢Γ,A

···· P2

⊢Γ,A
cut

⊢Γ

where all elements of Γ are atomic formulas, we apply first the induction
hypothesis to P1, P2 to get cut-free derivations Q1, Q2 with the same conclu-
sions and such that LQiM = LPiM for i ∈ {1, 2}. We can now apply lemma 15
to Q1, Q2 to get a cut-free derivation Q such that LQM = LQ1M ⊙A LQ2M =
LP1M ⊙A LP2M = LP M.

7 Totality and canonical forms

The availability of a cut-elimination procedure that preserves branch-labeled
axiom graphs unlocks a powerful technique for proving properties of the inter-
pretation: we can reason about cut-free derivations and the result generalizes
immediately to all derivations. An important example is the following property,
which together with the one described in lemma 13 characterises the class of
bl-graphs induced by derivations in GS4N .

Lemma 17. For all cut-free derivations P ∈ GS4N with conclusion ⊢Γ ,

Br(LP M) = Br(Γ).

Corollary 4. For all derivations P ∈ GS4N with conclusion ⊢Γ ,

Br(LP M) = Br(Γ).

Proof. Theorem 3 guarantees the existence of a cut-free derivation Q such
that LQM = LP M, to which we can apply lemma 17.

Definition 17 (Totality). Call a bl-graph G total w.r.t. a sharing-free named
sequent ⊢Γ if and only if

(i) VG = names(Γ) (G is a bl-graph on the names of Γ);
(ii) Br(G) = Br(Γ) (the branches of G are those of Γ);
(iii) for all xy ∈ EG, Γ [x] = Γ [y] (the edges of G link dual atoms).

Corollary 5. For all derivations P ∈ GS4N with conclusion ⊢Γ , LP M is total
w.r.t. ⊢Γ .

Proof. Immediate consequence of proposition 4, corollary 4, and lemma 13.

Theorem 4. Let G be any bl-graph that is total w.r.t. a sharing-free named
sequent ⊢Γ : there is a derivation P ∈ GS4N with conclusion ⊢Γ and such that
LP M = G.

26 F. Massaioli

Lemma 18. Any bl-graph G total w.r.t. ⊢Γ,A ∨B is also total w.r.t. ⊢Γ,A,B.

Lemma 19. Any bl-graph G total w.r.t. ⊢Γ,A ∧B is decomposable as

G = G↾Γ,A ⊔G↾Γ,B ,

with G↾Γ,A and G↾Γ,B total w.r.t. ⊢Γ,A and ⊢Γ,B, respectively.

Proof of theorem 4. By induction on the complexity degree of ⊢Γ (definition 24,
appendix B). Observe first that Γ cannot be empty, because then G would be
the empty graph and we would have Br(G) = ∅ ̸= {∅} = Br(Γ), contradicting
the totality of G w.r.t. Γ ; then:

– if ⊢Γ only contains atomic formulas, we can perform the construction de-
scribed in the proof of lemma 15;

– if ⊢Γ = ⊢∆,A ∨B, then G is total w.r.t. ⊢∆,A,B by lemma 18: we apply
the induction hypothesis to get a derivation Q with conclusion ⊢∆,A,B and
such that LQM = G; we conclude by applying a disjunction rule to Q:

···· Q

⊢∆,A,B
P = ∨

⊢∆,A ∨B

– if ⊢Γ = ⊢∆,A∧B, then G = G↾∆,A ⊔G↾∆,B by lemma 19, with G↾∆,A and
G↾∆,B total w.r.t. ⊢∆,A and ⊢∆,B respectively: we apply the induction
hypothesis twice to get derivations Q,R with conclusion ⊢∆,A and ⊢∆,B
respectively, and such that LQM = G↾∆,A, LRM = G↾∆,B; we conclude by
applying a conjunction rule to Q,R:

···· Q

⊢∆,A

···· R

⊢∆,B
P = ∧

⊢∆,A ∧B

Corollary 6. Let bl-graphs G,H be total w.r.t. the sequents ⊢Γ,A and ⊢Γ,A,
respectively: then their composite G⊙A H on A is total w.r.t. the sequent ⊢Γ .

7.1 The proof system BLG

Upon inspection of the proof above, one sees clearly that this is a kind of
sequentialization theorem. The natural question then is whether total bl-graphs
can provide a canonical representation of cut-free derivations up to arbitrary
permutations of logical rules.

Definition 18. Let BLG denote the set of all pairs ⟨G,Γ ⟩ such that

(i) G is a finite bl-graph;
(ii) Γ is a finite sharing-free set of named formulas;
(iii) G is total w.r.t. ⊢Γ .

We know by corollary 5 and theorem 4 that there exists ⟨G,Γ ⟩ ∈ BLG if and
only if the sequent ⊢Γ is a classical tautology. Is BLG a proof system for classical

On the semantics of proofs in classical sequent calculus 27

αx, αz αx, αw αy, αz αy, αw

⊢αx ∧ αy, αz ∧ αw

αx, βz, αv, γw αx, γu, αv, γw β
y
, βz, αv, γw β

y
, γu, αv, γw

⊢αx ∧ β
y
, βz ∧ γu, αv ∨ γw

Fig. 3: A graphical representation of BLG proofs. Each proof is drawn as a gener-
alised inference rule, with branch labels above the line and the conclusion below.
Above each branch we draw the associated edges as black lines.

propositional logic? The question is subtle: as recalled in the introduction, the
mere presence of a correctness criterion is not sufficient to provide a reasonable
notion of proof. We define a notion of size of a bl-graph/sequent pair and show
that totality is checkable in polynomial time: BLG is therefore a proof system in
the sense of Cook and Reckhow [8].

Definition 19. For any pair G = ⟨G,Γ ⟩ where G is a finite bl-graph and Γ a
finite sharing-free set of named formulas, let

size(G) = size(⊢Γ) + |VG|+
∑

e�GX

|X|,

where size(⊢Γ) is the size of the sequent (definition 24, appendix B), |VG| is
the number of vertices in the bl-graph G, and the last term is the total number of
vertices in the branch labels of G.

Proposition 5. For any pair G = ⟨G,Γ ⟩ where G is a finite bl-graph and Γ
a finite sharing-free set of named formulas, membership in BLG is decidable in
polynomial time in the size of G.

7.2 Properties of the system BLG

The proof system BLG enjoys very good properties. To begin with, all logical rules
of GS4N are admissible and invertible:

⟨G, (Γ,A,B)⟩ ∈ BLG
↓∨

⟨G, (Γ,A ∨B)⟩ ∈ BLG

⟨G, (Γ,A ∨B)⟩ ∈ BLG
↑∨

⟨G, (Γ,A,B)⟩ ∈ BLG

⟨G, (Γ,A)⟩ ∈ BLG ⟨H, (Γ,B)⟩ ∈ BLG
↓∧

⟨G ⊔H, (Γ,A ∧B)⟩ ∈ BLG

⟨G, (Γ,A ∧B)⟩ ∈ BLG
↑∧l⟨G↾Γ,A, (Γ,A)⟩ ∈ BLG

⟨G, (Γ,A ∧B)⟩ ∈ BLG
↑∧r⟨G↾Γ,B , (Γ,B)⟩ ∈ BLG

28 F. Massaioli

The cut-rule is also admissible by corollary 6:

⟨G, (Γ,A)⟩ ∈ BLG ⟨H, (Γ,A)⟩ ∈ BLG
cut

⟨G⊙A H,Γ ⟩ ∈ BLG

Finally, axiom and superposition rules are obviously admissible through their
interpretation:

A ≡ B
ax

⟨WkblΓ (Idbl{A,B}), (Γ,A,B)⟩ ∈ BLG

⟨G,Γ ⟩ ∈ BLG ⟨H,Γ ⟩ ∈ BLG
⊔

⟨G ⊔H,Γ ⟩ ∈ BLG

Isolation is as expected an identity on BLG proofs. The inversion procedure
amounts to a simple replacement of the conclusion for disjunctions; in the case
of conjunctions some time must be spent computing the graph restriction, but
it will be often significantly less than the time spent to perform inversion on
a sequent calculus derivation, especially when all axioms in the derivation are
atomic. These facts – together with the immediate notation and the availability
of equational reasoning – make BLG a very efficient tool for reasoning about proof
content and transformations.

The price to be paid lies in the size of proof objects, which is often exponential
in the complexity of the conclusion even when much smaller derivations would
be available in the context-splitting formulation of sequent calculus or even
in GS4 with non-atomic axioms. This is a well-known problem that BLG shares
with GS4 when restricted to atomic axioms. It is an open question whether some
proof-compression method could be devised to reduce the size BLG proofs without
loosing the good properties of the system.

8 On the absence of a cut-reduction procedure

By cut-reduction procedure we mean a set of syntactical rewriting steps capable of
reducing the complexity of cut-rule applications in a derivation until they become
atomic, while at the same time preserving correctness and the conclusion of the
derivation. One such step is implemented in the proof of theorem 3, where we
apply the isolation procedure to permute cuts towards the top of the derivation,
thus reducing the complexity of their context.

At present, however, we don’t know of any rewriting step capable of reducing
the complexity of cut-formulas in GS4N derivations while preserving their associ-
ated bl-graph. There is a known pair of natural cut-reduction steps, considered

On the semantics of proofs in classical sequent calculus 29

by Pulcini in [30]:

···· P
⊢Γ,A,B

∨
⊢Γ,A ∨B

···· Q
⊢Γ,A

···· R
⊢Γ,B

∧
⊢Γ,A ∧B

cut
⊢Γ

−→

···· P
⊢Γ,A,B

···· wk(Q,B)

⊢Γ,A,B
cut

⊢Γ,B

···· R
⊢Γ,B

cut
⊢Γ

···· P
⊢Γ,A,B

∨
⊢Γ,A ∨B

···· Q
⊢Γ,A

···· R
⊢Γ,B

∧
⊢Γ,A ∧B

cut
⊢Γ

−→

···· P
⊢Γ,A,B

···· wk(R,A)

⊢Γ,A,B
cut

⊢Γ,A

···· Q
⊢Γ,A

cut
⊢Γ

These are straightforward adaptations of the usual key steps for context-splitting
systems to the context-sharing setting of the system GS4N . The resulting cut
reduction procedure is non-deterministic at the syntactical level, but both rewrit-
ing steps preserve the axiom graph obtained through the unrefined construction
(definition 9).

Unfortunately, the two steps are incompatible with the refined interpreta-
tion (definition 15). To see why, one must remember that the branch-sensitive
notion of composition is designed to omit all those paths that connect the two
sides of conjunctions occurring outside the interface. The two rewriting steps
above, in reducing one cut to two cuts of lower complexity, select one subformula
of the disjunction to bring temporarily outside the interface. This might result in
the loss of some paths when the selected formula is a conjunction:

···· P
⊢Γ,A,B ∧ C

∨
⊢Γ,A ∨ (B ∧ C)

···· Q
⊢Γ,A

···· R
⊢Γ,B ∨ C

∧
⊢Γ,A ∧ (B ∨ C)

cut
⊢Γ

−→

···· P
⊢Γ,A,B ∧ C

···· wk(Q,B ∧ C)

⊢Γ,A,B ∧ C
cut

⊢Γ,B ∧ C

···· R
⊢Γ,B ∨ C

cut
⊢Γ

Here the left side of the rewriting rule is associated to the bl-graph

LP M ⊙(A∨(B∧C)) (LQM ⊔ LRM),

while the right side is interpreted as

(LP M ⊙A LQM)⊙B∧C LRM;

the conjunction B∧C is contained in the interface in the former expression, where
the interpretation is computed by a single composition step, but lies outside
the interface in the first half of the latter expression, where we compute first
the intermediate step LP M ⊙A LQM. To show that this is an actual problem, not
just a hypothetical possibility, we provide a complete (but slightly involved)
counter-example in fig. 6.

It remains unclear whether there is some syntactical counterpart to the
semantical cut-elimination procedure described in section 6.2. It is possible that

30 F. Massaioli

the problem could be solved simply by superposing the two reducts, thus making
the rewriting step deterministic:

···· P
⊢Γ,A,B

···· wk(Q,B)

⊢Γ,A,B
cut

⊢Γ,B

···· R
⊢Γ,B

cut
⊢Γ

···· P
⊢Γ,A,B

···· wk(R,A)

⊢Γ,A,B
cut

⊢Γ,A

···· Q
⊢Γ,A

cut
⊢Γ

⊔
⊢Γ

We have not been able to find a counter-example so far, but we have yet to
attempt a proof. We would have to show somehow that whenever some path is
erased on one side, then it must be preserved on the other side, and vice versa.

A different possibility would be to further refine the interpretation so as
to make it invariant under the two traditional cut-reduction steps. The key
observation in this regard is that all counter-examples known to us – including
indeed the one in fig. 6 – seem to rely critically on the possibility of constructing
alternating paths using edges from both branches of a superposition rule. This
happens because superposition is not interpreted as a non-deterministic sum of
separate proofs, but as some kind of parallel composition that “blends” two proofs
together, thus obtaining a new and generally distinct one. We conjecture that
by treating superpositions as proper non-deterministic sums we should be able
to recover invariance under the traditional logical reduction steps. The picture
however is complicated by the fact that superpositions might be introduced when
reducing weakening-weakening cuts: it is not clear then how the new composition
operator should look like.

References

1. Abrusci, V.M., and Tortora de Falco, L.: Logica: Volume 1 - Dimostrazioni e modelli
al primo ordine. Springer Milan (2014)

2. Andrews, P.B.: Refutations by Matings. IEEE Trans. Comput. 25(8), 801–807
(1976)

3. Andrews, P.B.: Transforming matings into natural deduction proofs. In: Bibel, W.,
and Kowalski, R. (eds.) 5th Conference on Automated Deduction, pp. 281–292.
Springer Berlin Heidelberg, Berlin, Heidelberg (1980)

4. Barbanera, F., and Berardi, S.: A Symmetric Lambda-Calculus for Classical Program
Extraction. Information and Computation 125(2), 103–117 (1996)

5. Barbanera, F., Berardi, S., and Schivalocchi, M.: “Classical” programming-with-
proofs in λSym

PA :an analysis of non-confluence. In: Proceedings of TACS’97. LNCS,
vol. 1281. Springer, Heidelberg (1997)

6. Buss, S.R.: The undecidability of k-provability. Annals of Pure and Applied Logic
53(1), 75–102 (1991)

7. Carbone, A.: Interpolants, cut elimination and flow graphs for the propositional
calculus. Annals of Pure and Applied Logic 83(3), 249–299 (1997)

8. Cook, S.A., and Reckhow, R.A.: The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

On the semantics of proofs in classical sequent calculus 31

9. Danos, V., Joinet, J.-B., and Schellinx, H.: A New Deconstructive Logic: Linear
Logic. The Journal of Symbolic Logic 62(3), 755–807 (1997)

10. Danos, V., Joinet, J.-B., and Schellinx, H.: LKQ and LKT: Sequent calculi for
second order logic based upon dual linear decompositions of classical implication. In:
Girard, J.-Y., Lafont, Y., and Regnier, L. (eds.) Advances in Linear Logic. London
Mathematical Society Lecture Note Series, pp. 211–224. Cambridge University
Press (1995)

11. Führmann, C., and Pym, D.: On the geometry of interaction for classical logic. In:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science,
2004, pp. 211–220. IEEE Computer Society (2004)

12. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift
39(1), 176–210 (1935)

13. Girard, J.-Y.: A new constructive logic: classical logic. Mathematical Structures in
Computer Science 1(3), 255–296 (1991)

14. Girard, J.-Y.: Geometry of interaction II: Deadlock-free algorithms. In: Martin-Löf,
P., and Mints, G. (eds.) COLOG-88, pp. 76–93. Springer Berlin Heidelberg, Berlin,
Heidelberg (1990)

15. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987)
16. Girard, J.-Y., Lafont, Y., and Taylor, P.: Proofs and Types. Cambridge University

Press (1989)
17. Guglielmi, A., and Gundersen, T.: Normalisation Control in Deep Inference via

Atomic Flows. Logical Methods in Computer Science 4 (2008)
18. Hughes, D.: A minimal classical sequent calculus free of structural rules. Annals of

Pure and Applied Logic 161(10), 1244–1253 (2010)
19. Hughes, D.J.D.: Proofs without Syntax. Annals of Mathematics 164(3), 1065–1076

(2006)
20. Hughes, D.J.: Towards Hilbert’s 24th Problem: Combinatorial Proof Invariants:

(Preliminary version). Electronic Notes in Theoretical Computer Science 165, 37–63
(2006). Proceedings of the 13th Workshop on Logic, Language, Information and
Computation (WoLLIC 2006)

21. Kleene, S.C.: Mathematical Logic. Wiley (1967)
22. Krivine, J.-L.: On the Structure of Classical Realizability Models of ZF. In: Herbelin,

H., Letouzey, P., and Sozeau, M. (eds.) 20th International Conference on Types for
Proofs and Programs, TYPES 2014. LIPIcs, pp. 146–161. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik (2014)

23. Krivine, J.-L.: Realizability in classical logic. 27, 197–229 (2009)
24. Laird, J.: A Deconstruction of Non-deterministic Classical Cut Elimination. In:

Abramsky, S. (ed.) Typed Lambda Calculi and Applications, pp. 268–282. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

25. Lamarche, F., and Straßburger, L.: Naming Proofs in Classical Propositional Logic.
In: Urzyczyn, P. (ed.) Typed Lambda Calculi and Applications, pp. 246–261.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

26. Liang, C., and Miller, D.: Focusing and Polarization in Linear, Intuitionistic, and
Classical Logics. Theoretical Computer Science 410(46) (2009)

27. Negri, S., and Plato, J. von: Structural Proof Theory. Cambridge University Press
(2001)

28. Parigot, M.: λµ-Calculus: An algorithmic interpretation of classical natural de-
duction. In: Voronkov, A. (ed.) Logic Programming and Automated Reasoning,
pp. 190–201. Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

32 F. Massaioli

29. Piazza, M., and Pulcini, G.: Fractional Semantics for Classical Logic. The Review
of Symbolic Logic 13(4), 810–828 (2020)

30. Pulcini, G.: A note on cut-elimination for classical propositional logic. Archive for
Mathematical Logic 61(3), 555–565 (2022)

31. Schütte, K.: Proof Theory. Springer Berlin Heidelberg (1977)
32. Statman, R.: Structural Complexity of Proofs. Stanford University (1974)
33. Straßburger, L.: Towards a Theory of Proofs of Classical Logic. Université Paris-

Diderot - Paris VII (2011)
34. Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The Syntax

and Semantics of Infinitary Languages, pp. 204–236. Springer Berlin Heidelberg,
Berlin, Heidelberg (1968)

35. Troelstra, A.S., and Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press (2000)

A Graphs

Definition 20 (Simple graphs). A graph (also known as simple graph) is
defined by a pair G = ⟨VG, EG⟩ where VG is a set of vertices and EG is a set of
unordered pairs of vertices, i.e. two-element subsets of VG, called the edges of G.
For any pair of distinct vertices u ̸= v ∈ VG, let uv denote the set {u, v} and say
that u and v are adjacent in G iff uv ∈ EG.

Definition 21 (Subgraphs). Given graphs H,G, say that H is a subgraph of
G and write H ⊑ G iff VH ⊆ VG and EH ⊆ EG. Write H ⊏ G iff H ⊑ G and
H ̸= G.

Given a graph G, any set S of vertices induces a subgraph H ⊑ G by letting
VH = VH ∩ S and restricting the edge set:

EH = {e ∈ EG | e ⊆ S}.

We say that H is an induced subgraph of G and denote it by G↾S.

Graphs can be combined by an operation related to set-theoretic union, which
constructs the least upper bound of a family of graphs w.r.t. the subgraph
order ⊑:

Definition 22 (Graph union). Let I be a set, (Gi)i∈I a family of graphs
indexed by I. We define the union or superposition of the family as the graph⊔

i∈I

Gi = ⟨
⋃
i∈I

VGi
,
⋃
i∈I

EGi
⟩.

As a special case, given n ≥ 0 and graphs G1, . . . , Gn, we define the finite union

G1 ⊔ . . . ⊔Gn =

n⊔
i=1

Gi.

Proposition 6. Let I be a set, (Gi)i∈I a family of graphs indexed by I; the
union graph

⊔
i∈I Gi is the least upper bound of the family w.r.t. the subgraph

order ⊑.

On the semantics of proofs in classical sequent calculus 33

Proposition 7. Let I be any set, (Gi)i∈I a family of graphs indexed by I, S an
arbitrary set of vertices: then(⊔

i∈I

Gi

)
↾S =

⊔
i∈I

(Gi↾S)

B Complexity measures on formulas, sequents and
derivations

We define in the following paragraphs some useful measures of the complexity of
formulas, sequents and derivations, and discuss the relationships between them.

Definition 23 (Complexity of formulas). We define by structural induc-
tion four different measures on named formulas A: the height h(A), the atom
count #at(A), the degree deg(A) and the size size(A):

– if A is atomic, let

h(A) = deg(A) = 0,

#at(A) = size(A) = 1;

– if A = B ∨ C or A = B ∧ C, let

h(A) = 1 +max{h(B), h(C)},
#at(A) = #at(B) + #at(C),

deg(A) = 1 + deg(B) + deg(C),

size(A) = 1 + size(B) + size(C).

The height tracks the length of the longest branch in the syntax tree of the
formula, the atom count is self-explanatory, the degree is the number of logical
operators occurring in the formula, and the size is the number of symbols (atoms
and operators).

Proposition 8. For all named formulas A:

(i) #at(A) = 1 + deg(A);
(ii) size(A) = #at(A) + deg(A) = 1 + 2 · deg(A);
(iii) h(A) ≤ deg(A) < #at(A) ≤ size(A).

Proof. The inequalities deg(A) < #at(A) and #at(A) ≤ size(A) are direct
consequences of facts (i) and (ii). We prove facts (i) and (ii) and the first
inequality simultaneously by structural induction on A:

– if A is atomic, then

0 = h(A) ≤ deg(A) = 0,

#at(A) = 1 = 1 + 0 = 1 + deg(A), and
size(A) = 1 = 1 + 0 = #at(A) + deg(A);

34 F. Massaioli

– if A = B ∨ C or A = B ∧ C, then

#at(A) = #at(B) + #at(C) (def. 23)
= deg(B) + 1 + deg(C) + 1 (ind. hyp.)
= 1 + deg(B) + deg(C) + 1

= deg(A) + 1 (def. 23)

size(A) = 1 + size(B) + size(C) (def. 23)
= 1 +#at(B) + deg(B) + #at(C) + deg(C) (ind. hyp.)
= #at(B) + #at(C) + 1 + deg(B) + deg(C)

= #at(A) + deg(A) (def. 23)

h(A) = 1 +max{h(B), h(C)} (def. 23)
≤ 1 + h(B) + h(C)

≤ 1 + deg(B) + deg(C) (ind. hyp.)
= deg(A) (def. 23)

Definition 24 (Complexity of sequents). We define for sequents the same
measures as for formulas, by taking sums over all formulas contained in the
sequent: for all named sequents ⊢Γ let

h(⊢Γ) =
∑
A∈Γ

h(A), #at(⊢Γ) =
∑
A∈Γ

#at(A),

deg(⊢Γ) =
∑
A∈Γ

deg(A), size(⊢Γ) =
∑
A∈Γ

size(A).

Since Γ is required to be finite, all measures are well-defined.

Proposition 9. For all named sequents ⊢Γ :

(i) #at(⊢Γ) = |Γ |+ deg(⊢Γ);
(ii) size(⊢Γ) = #at(⊢Γ) + deg(⊢Γ) = |Γ |+ 2 · deg(A);
(iii) h(⊢Γ) ≤ deg(⊢Γ) < #at(⊢Γ) ≤ size(⊢Γ).

Proof. For fact (i), observe that

#at(⊢Γ) =
∑
A∈Γ

#at(A) (def. 24)

=
∑
A∈Γ

1 + deg(A) (lemma 8 (i))

=

(∑
A∈Γ

1

)
+

(∑
A∈Γ

deg(A)

)
(associativity)

= #Γ + deg(⊢Γ) (def. 24).

On the semantics of proofs in classical sequent calculus 35

Fact (ii) follows from definition 24 and the associativity of sums; fact (iii) follows
from proposition 8, point (iii) and the fact that addition is strictly monotonic
over the natural numbers.

Definition 25 (Complexity of derivations). We define by structural in-
duction two complexity measures on named derivation trees P ∈ GS4N : the
height h(P) and the size size(P):

– if P has the form
ax{A,B}⊢Γ,A,B

where A ≡ B, then let

h(P) = 0, size(P) = 1;

– otherwise P has the form

···· Q1

⊢Γ1 · · ·

···· Qn

⊢Γn
r

⊢Γ

where r ∈ {cut,⊔,∨,∧} and n > 0: then let

h(P) = 1 + max
1≤i≤n

h(Qi),

size(P) = 1 +
∑

1≤i≤n

size(Qi).

C Proofs of the inversion lemmas

We collect in the present section all proofs of the inversion lemmas from section 3
plus the proofs of admissibility for contraction and weakening.

Proof of lemma 1. By structural induction on P :

– if P has the form

ax{C∧D,A∨B}⊢∆,C ∧D,A ∨B

where A ≡ C, B ≡ D and Γ = ∆ ∪ {C ∧D}, then let inv(P,A ∨B) be

ax{C,A}⊢∆,C,A,B
ax{D,B}⊢∆,D,A,B
∧

⊢∆,C ∧D,A,B

36 F. Massaioli

– if P has the form
ax{C,D}⊢∆,C,D,A ∨B

where C ≡ D and Γ = ∆ ∪ {C,D}, then let inv(P,A ∨B) be

ax{C,D}⊢∆,C,D,A,B

– if P has the form ···· Q

⊢Γ,A,B
∨

⊢Γ,A ∨B

then let inv(P,A ∨B) = Q;
– if P has the form

···· Q1

⊢Γ1, A ∨B · · ·

···· Qn

⊢Γn, A ∨B
r

⊢Γ,A ∨B

where r ∈ {cut,⊔,∨,∧} and n > 0, then apply inv(−, A∨B) recursively to
each Qi and let inv(P,A ∨B) be

···· inv(Q1, A ∨B)

⊢Γ1, A,B · · ·

···· inv(Qn, A ∨B)

⊢Γn, A,B
r

⊢Γ,A,B

Proof of lemma 2. By structural induction on P :

– if P has the form

ax{C∨D,A∧B}⊢∆,C ∨D,A ∧B

where A ≡ C, B ≡ D and Γ = ∆ ∪ {C ∨D}, then let invl(P,A ∧B) be

ax{C,A}⊢∆,C,D,A
∨

⊢∆,C ∨D,A

– if P has the form
ax{C,D}⊢∆,C,D,A ∧B

where C ≡ D and Γ = ∆ ∪ {C,D}, then let invl(P,A ∧B) be

ax{C,D}⊢∆,C,D,A

On the semantics of proofs in classical sequent calculus 37

– if P has the form ···· Q

⊢Γ,A

···· R

⊢Γ,B
∧

⊢Γ,A ∧B

then let invl(P,A ∧B) = Q;
– if P has the form

···· Q1

⊢Γ1, A ∧B · · ·

···· Qn

⊢Γn, A ∧B
r

⊢Γ,A ∧B

where r ∈ {cut,⊔,∨,∧} and n > 0, then apply invl(−, A ∧B) recursively
to each Qi and let invl(P,A ∧B) be

···· invl(Q1, A ∧B)

⊢Γ1, A · · ·

···· invl(Qn, A ∧B)

⊢Γn, A
r

⊢Γ,A

Proof of lemma 3. By structural induction on P :

– if P has the form

ax{C∨D,A∧B}⊢∆,C ∨D,A ∧B

where A ≡ C, B ≡ D and Γ = ∆ ∪ {C ∨D}, then let invr(P,A ∧B) be

ax{D,B}⊢∆,C,D,B
∨

⊢∆,C ∨D,B

– if P has the form
ax{C,D}⊢∆,C,D,A ∧B

where C ≡ D and Γ = ∆ ∪ {C,D}, then let invr(P,A ∧B) be

ax{C,D}⊢∆,C,D,B

– if P has the form ···· Q

⊢Γ,A

···· R

⊢Γ,B
∧

⊢Γ,A ∧B

then let invr(P,A ∧B) = R;

38 F. Massaioli

– if P has the form
···· Q1

⊢Γ1, A ∧B · · ·

···· Qn

⊢Γn, A ∧B
r

⊢Γ,A ∧B

where r ∈ {cut,⊔,∨,∧} and n > 0, then apply invr(−, A ∧B) recursively
to each Qi and let invr(P,A ∧B) be

···· invr(Q1, A ∧B)

⊢Γ1, B · · ·

···· invr(Qn, A ∧B)

⊢Γn, B
r

⊢Γ,B

Proof of lemma 4. Let us fix once and for all a complete enumeration x1, x2, . . .
without repetitions of the countable set N of names. The wk-transformation will
be deterministic up to our choice of enumeration. We are also gonna need the
theory of renamings from appendix D. We proceed by induction on the height
of P :

– if P has the form
ax{C,D}⊢Γ ′, C,D

where C ≡ D and Γ = Γ ′ ∪ {C,D}, then let wk(P,∆) be

ax{C,D}⊢Γ ′, C,D,∆

– if P has the form ···· Q1

⊢Γ1 · · ·

···· Qn

⊢Γn
r

⊢Γ

where r ∈ {⊔,∨,∧} and n > 0, then one may check easily (by inspection of
the three rules listed before) that names(Γi) ⊆ names(Γ) for all 1 ≤ i ≤ n:
apply wk(−, ∆) recursively to each Qi and let wk(P,∆) be

···· wk(Q1, ∆)

⊢Γ1, ∆ · · ·

···· wk(Qn, ∆)

⊢Γn, ∆
r

⊢Γ,∆

– if P has the form ···· Q

⊢Γ,A

···· R

⊢Γ,A
cut

⊢Γ

we must take into account the possibility that A,A and ∆ share some
names, as the hypothesis only guarantees that ∆ share no names with Γ .

On the semantics of proofs in classical sequent calculus 39

Let then k be the smallest natural number such that, for all 1 ≤ i ≥ k,
xi /∈ names(P) ∪ names(∆): such a k must exist because only finitely many
names may occur either in P or ∆, and the enumeration has no repetitions.
We construct a renaming ϕ : names(P) → N of P by letting

ϕ(xi) =

{
xi+k if xi ∈ names(∆),

xi otherwise,

for all i ∈ N such that xi ∈ names(P). Because no name in Γ occurs also
in ∆, ϕ is guaranteed to act as the identity on all formulas in Γ , i.e. ϕP has
the form ···· ϕQ

⊢Γ, ϕA

···· ϕR

⊢Γ, (ϕA)
cut

⊢Γ

where ϕA, (ϕA) share no location with ∆ by construction of ϕ, and ϕQ, ϕR
have by proposition 11 the same height as Q,R respectively: let then wk(P,∆)
be ···· wk(ϕQ,∆)

⊢Γ, ϕA,∆

···· wk(ϕR,∆)

⊢Γ, (ϕA), ∆
cut

⊢Γ,∆

D Renamings

Definition 26. A renaming of a named formula A (resp. set Γ of named formu-
las) is an injective map from names(A) (resp. names(Γ)) to N . For any named
formula A and renaming ϕ of A, let

ϕA =

αϕx if A = αx for some α ∈ A, x ∈ N ,

ϕB ∨ ϕC if A = B ∨ C,

ϕB ∧ ϕC if A = B ∧ C.

The application of a renaming ϕ to a set Γ is defined by taking its image under ϕ,
observing that, for each A ∈ Γ , the restriction of ϕ to names(A) is necessarily a
renaming of A.

Proposition 10. For any named formula A and renaming ϕ of A, ϕA is also a
named formula with A ≡ ϕA, names(ϕA) = ϕ(names(A)), and sharing-free iff so
is A.

Proof. The equivalence result and that about name sets are more or less immedi-
ate, by structural induction on A. As regards sharing-freedom, we reason again
by structural induction on A:

– if A is atomic then so is ϕA and they are both sharing-free by definition;

40 F. Massaioli

– if A = B⋄C (where ⋄ ∈ {∨,∧}), then ϕA = ϕB⋄ϕC. By induction hypothesis
B,C are sharing-free if and only if so are ϕB, ϕC, respectively. Moreover,
because ϕ is injective, names(ϕB) = ϕ(names(B)) and the same holds for C
mutatis mutandis, B,C are disjoint if and only if so are ϕB, ϕC. Then A
is sharing-free, by definition, iff B,C are disjoint and both sharing-free,
iff ϕB, ϕC are disjoint and both sharing-free, iff again by definition ϕA is
sharing-free.

Lemma 20. Let A be any named formula:

(i) ϕ is a renaming of A if and only if it is a renaming of A;
(ii) for any renaming ϕ of A, ϕ(A) = (ϕA).

Proof. Left to the reader.

Lemma 21. Let Γ be a set of named formulas, ϕ a renaming of Γ :

(i) for all A,B ∈ Γ , A = B if and only if ϕA = ϕB;
(ii) for all A,B ∈ Γ , A,B share names if and only if so do ϕA, ϕB;
(iii) for all ∆,∆′ ⊆ Γ , ∆,∆′ share names if and only if so do ϕ∆, ϕ∆′.

Proof. Point (ii) is a special case of point (iii), which is in turn an immediate
consequence of the injectivity of ϕ plus the obvious facts that names(ϕ∆) =
ϕ(names(∆)) and names(ϕ∆′) = ϕ(names(∆′)). For point (i) we proceed by
structural induction on A:

– A is atomic: then A = B if and only if A = αx = B (resp. A = αx = B) for
some α ∈ A and x ∈ N , if and only if ϕA = αϕx = ϕB (resp. ϕA = αϕx =
ϕB);

– A = C ⋄D where ⋄ ∈ {∨,∧}: then A = B if and only if B = C ⋄D, if and
only if ϕA = ϕC ∨ ϕD = ϕB.

Corollary 7. For all named sequents ⊢Γ and renamings ϕ of ⊢Γ , ϕ(⊢Γ) is
also a named sequent with (⊢Γ) ≡ ϕ(⊢Γ), and sharing-free iff so is ⊢Γ .

Proof. The fact that ϕ(⊢Γ) is a named sequent and sharing-free iff so is ⊢Γ
follows from proposition 10 and lemma 21, point (ii). For the equivalence, observe
that by lemma 21, point (i), ϕ induces a bijection between Γ and ϕΓ such that
(again by proposition 10) A ≡ ϕA for all A ∈ Γ .

Finally, we can rename whole derivation trees while preserving their structure
and conclusion (obviously up to renaming):

Definition 27. A renaming of a named derivation tree P ∈ GS4N is an injective
map ϕ : names(P) → N .

The application of ϕ to P , noted ϕP , is the tree obtained by applying ϕ
recursively to the named sequents labeling each node of P (plus the selected
formulas in axiom rules).

On the semantics of proofs in classical sequent calculus 41

Proposition 11. Let P ∈ GS4N be any named derivation tree with conclu-
sion ⊢Γ , ϕ a renaming of P : then ϕP ∈ GS4N is also a derivation tree with
conclusion ϕ(⊢Γ) and height h(ϕP) = h(P), cut-free (resp. superposition-free)
iff so is P .

Proof. By a simple structural induction on P , using proposition 10 and corollary 7
to prove that constraints on the shape of rules are satisfied by ϕP at every
step.

E Proofs of lemmas regarding simple axiom graphs

Proof of proposition 1. By structural induction on P :

– if P has the form
ax{A,B}⊢∆,A,B

where Γ = ∆ ∪ {A,B} and A ≡ B then by definitions 6 and 9 VJP K =

names(∆) ∪ names({A,B}) = names(Γ);
– if P has the form ···· Q

⊢Γ,A

···· R

⊢Γ,A
cut

⊢Γ

then by induction hypothesis and definition 8

VJP K = (names(Γ,A) ∪ names(Γ,A)) \ names(A);

the statement follows from the fact that names(A) = names(A);

all other cases follow immediately from the induction hypothesis.

Proof of lemma 5. By structural induction on P . For the sake of brevity we
let P ′ = inv(P,A ∨B) and omit at each step the shape of P, P ′: the interested
reader may inspect the corresponding steps in the proof of lemma 1 (appendix C).
Because names(Γ,A,B) = names(Γ,A ∨ B), we have in any case VJP ′K = VJP K
and it is enough to show that EJP ′K = EJP K:

– if P ends with an axiom rule application of the kind ax{C∧D,A∨B} with
conclusion ⊢∆,C ∧D,A ∨B where Γ = ∆ ∪ {C ∧D}, then by definition 9

JP ′K = (Wk∆,B ⊔ Id{C,A}) ⊔ (Wk∆,A ⊔ Id{D,B})

and by definition 6 we have

JP ′K = Wk∆ ⊔ Id{C,A} ⊔ Id{D,B}

= Wk∆ ⊔ Id{C∧D,A∨B} = JP K;

42 F. Massaioli

– if P ends with an axiom rule application of the kind ax{C,D} with conclusion
⊢∆,A ∨B,C,D where Γ = ∆ ∪ {C,D}, then by definitions 6 and 9

JP ′K = Wk∆,A,B ⊔ Id{C,D} = Wk∆,A∨B ⊔ Id{C,D} = JP K;

– if P ends with a ∨-rule application introducing A∨B with premiss subtree Q,
then P ′ = Q and JP ′K = JQK = JP K;

– if P ends with a cut-rule application on formulas C,C, with premiss sub-
derivations Q,R, we have by induction hypothesis Jinv(Q,A ∨B)K = JQK
and Jinv(R,A ∨B)K = JRK, hence

JP ′K = Jinv(Q,A ∨B)K ⊙C Jinv(R,A ∨B)K = JQK ⊙C JRK = JP K;

– if P ends with a sum-, ∨- or ∧-rule application that does not introduce
A ∨B, with premiss subtrees Q1, . . . , Qn, we have Jinv(Qi, A ∨B)K = JQiK
by induction hypothesis for all 1 ≤ i ≤ n: then

JP ′K = Jinv(Q1, A ∨B)K ⊔ . . . ⊔ Jinv(Qn, A ∨B)K
= JQ1K ⊔ . . . ⊔ JQnK = JP K.

Proof of lemma 6. We only prove the first part of the statement, i.e. that

Jinvl(P,A ∧B)K ⊑ JP K↾Γ,A;

the argument for the second part is analogous. Let P ′ = invl(P,A ∧B), As in
the previous proof, we do not recall the shape of P, P ′; the reader is invited to
check our statements against the proofs of lemmas 2 and 3 (appendix C). Observe
first that by proposition 1 we have

VJP ′K = names(Γ,A) = VJP K↾Γ,A
.

We then need to prove only that EJP ′K ⊆ EJP K, as this will be enough to guarantee
that EJP ′K ⊆ EJP K↾Γ,A

. We proceed by structural induction on P :

– if P ends with an axiom rule application of the kind ax{C∨D,A∧B} with
conclusion ⊢∆,C ∨D,A ∧B where Γ = ∆ ∪ {C ∨D}, then by definitions 6
and 9

JP ′K = Wk∆,D ⊔ Id{C,A}

⊑ Wk∆ ⊔ Id{C,A} ⊔ Id{D,B} = Wk∆ ⊔ Id{C∨D,A∧B} = JP K;

– if P ends with an axiom rule application of the kind ax{C,D} with conclusion
⊢∆,A ∧B,C,D where Γ = ∆ ∪ {C,D}, then by definitions 6 and 9

JP ′K = Wk∆,A ⊔ Id{C,D} ⊑ Wk∆,A∧B ⊔ Id{C,D} = JP K;

On the semantics of proofs in classical sequent calculus 43

– if P ends with a ∧-rule application introducing A ∧ B whose premiss sub-
trees Q,R have conclusions respectively ⊢Γ,A and ⊢Γ,B, then P ′ = Q and
the conclusion is immediate;

– if P ends with a cut-rule application on formulas C,C, with premiss sub-
derivations Q,R, we have by induction hypothesis Jinvl(Q,A ∧B)K ⊑ JQK
and Jinvl(R,A ∧B)K ⊑ JRK, with

JP ′K = Jinvl(Q,A ∧B)K ⊙C Jinvl(R,A ∧B)K.

By definition 8, xy ∈ EJP ′K if and only if there is an alternating path (defini-
tion 7) connecting x with y between Jinvl(Q,A ∧B)K and Jinvl(R,A ∧B)K
on inteface names(C). It is easy to check that the same sequence of vertices
is an alternating path between JQK and JRK through interface names(C), and
therefore xy ∈ EJQK⊙CJRK = EJP K;

– if P ends with a sum-, ∨- or ∧-rule application that does not introduce A∧B,
we conclude by induction hypothesis and proposition 7.

Proof of proposition 2. Immediate by lemma 5 when A is a disjunction; for
conjunctions we need to show that

JP K = Jinvl(P,A)K ⊔ Jinvr(P,A)K,

whenever P is cut-free. In particular, it suffices to show that

EJP K = EJinvl(P,A)K ∪ EJinvr(P,A)K.

By structural induction on P , assuming A = A1 ∧A2:

– if P ends with an axiom rule application of the kind ax{B1∨B2,A} with
conclusion ⊢∆,B1 ∨B2, A where Γ = ∆ ∪ {B1 ∨B2}, then

JP K = Wk∆ ⊔ Id{B1∨B2,A} = Wk∆ ⊔ Id{B1,A1} ⊔ Id{B2,A2},

Jinvl(P,A)K = Wk∆,B2
⊔ Id{B1,A1},

Jinvr(P,A)K = Wk∆,B1
⊔ Id{B2,A2}.

Because the weakening graphs have no edges, we can conclude that

EJP K = EId{B1,A1}
⊔ EId{B2,A2}

= EJinvl(P,A)K ⊔ EJinvr(P,A)K.

– if P ends with an axiom rule application of the kind ax{B,C} with conclusion
⊢∆,A,B,C where Γ = ∆ ∪ {B,C}, then we have

JP K = Wk∆ ⊔ Id{B,C},

Jinvl(P,A)K = Wk∆,A1
⊔ Id{B,C},

Jinvr(P,A)K = Wk∆,A2 ⊔ Id{B,C}.

Therefore, because the weakening graphs have no edges,

EJP K = EId{B,C}
= EJinvl(P,A)K = EJinvr(P,A)K,

from which the conclusion follows.

44 F. Massaioli

– if P ends with a ∧-rule application introducing A, the conclusion is trivial as
P = isl(P,A);

– if P ends with a ⊔-, ∨- or ∧-rule application that does not introduce A, with
premiss subtrees Q1, . . . , Qn, we have by induction hypothesis

EJQiK = EJinvl(Qi,A)K ∪ EJinvr(Qi,A)K.

for all 1 ≤ i ≤ n. The result then follows from the fact that

EJP K =

n⋃
i=1

EJQiK =

(
n⋃

i=1

EJinvl(Qi,A)K

)
∪

(
n⋃

i=1

EJinvr(Qi,A)K

)
.

F Proofs of lemmas regarding branch-labeled axiom
graphs

F.1 Properties of branch sets

Lemma 22. For all named formulas A, if X ∈ Br(A) then X ⊆ names(A).

Proof. Immediate by induction on A.

Proof of lemma 7. Observe first that names(Γ) =
⋃

A∈Γ names(A), and assume
X ∈ Br(Γ). By definition X ⊆ names(Γ), therefore X =

⋃
A∈Γ (X∩names(A)); we

know also that (X∩names(A)) ∈ Br(A) for all A ∈ Γ , hence we can choose XA =
X ∩ names(A).

Conversely, assume X =
⋃

A∈Γ XA with XA ∈ Br(A) for all A ∈ Γ . By
lemma 22, X ⊆ names(A); moreover, because Γ is sharing-free, its elements have
pairwise disjoint name sets, hence the XA in particular are pairwise disjoint and
X ∩ names(A) = XA ∈ Br(A), as desired.

Proof of lemma 8. Assume X ∈ Br(Γ ∪ ∆): by lemma 7 there is an indexed
family (XA)A∈Γ∪∆ of name sets such that X =

⋃
A∈Γ∪∆ XA and XA ∈ Br(A) for

all A ∈ Γ ∪∆. Let then Y =
⋃

A∈Γ XA and Z =
⋃

A∈∆ XA: again by lemma 7,
Y ∈ Br(Γ) and Z ∈ Br(∆), and obviously X = Y ∪ Z. The argument for the
converse is analogous, reversing the direction of all implications.

Proof of proposition 3. Fact (i) is left to the reader. For fact (ii), observe that
Br({A,B}) = Br({A} ∪ {B}) = Br(A ∨ B) as an immediate consequence of
lemma 8: then we have

Br(Γ,A ∨B) = {X ∪ Y | X ∈ Br(Γ), Y ∈ Br(A ∨B)}
= {X ∪ Y | X ∈ Br(Γ), Y ∈ Br({A,B})}
= Br(Γ,A,B).

On the semantics of proofs in classical sequent calculus 45

For fact (iii), recall that Br(A ∧B) = Br(A) ∪ Br(B); then, again by lemma 8,

Br(Γ,A ∧B) = {X ∪ Y | X ∈ Br(Γ), Y ∈ Br(A ∧B)}
= {X ∪ Y | X ∈ Br(Γ), Y ∈ Br(A) ∪ Br(B)}
= {X ∪ Y | X ∈ Br(Γ), Y ∈ Br(A)}

∪ {X ∪ Y | X ∈ Br(Γ), Y ∈ Br(B)}
= Br(Γ,A) ∪ Br(Γ,B).

For fact (iv), observe that (by an easy inductive argument) all branches of A (resp.
of B) must be non-empty, and remember that Γ,A,B have disjoint name sets by
hypothesis. Let then X ∈ Br(Γ,A) ∩ Br(Γ,B): by lemma 8 there is a non-empty
Y ∈ Br(A) such that Y ⊆ X. By construction we have also X ⊆ names(Γ,B), but
then there should be some name z ∈ Y ⊆ names(A) such that z ∈ names(Γ,B),
which is impossible.

F.2 Properties of branch-labeled axiom graphs

Lemma 23. For all bl-graphs G,

Br(WkblΓ (G)) = {X ∪ Y | X ∈ Br(G), Y ∈ Br(Γ)}.

Proof. Immediate, see definition 14.

Lemma 24. For any pair A,B of disjoint and sharing-free named formulas such
that A ≡ B, Br(Idbl{A,B}) = Br(A,B).

Proof. By induction on the height of A:

– if A is atomic, then Br(A,B) = {names(A,B)} = Br(Idbl{A,B}) by proposi-
tion 3 and definition 14;

– if A = A1 ∨A2 and B = B1 ∧B2, then by definition 14

Br(Idbl{A,B}) = Br(WkblA2
(Idbl{A1,B1}

) ⊔ WkblA1
(Idbl{A2,B2}

))

= Br(WkblA2
(Idbl{A1,B1}

)) ∪ Br(WkblA1
(Idbl{A2,B2}

)).

By induction hypothesis, Br(Idbl{A1,B1}
) = Br(A1, B1) and Br(Idbl{A2,B2}

) =

Br(A2, B2); by lemmas 8 and 23

Br(WkblA2
(Idbl{A1,B1}

))

= {X ∪ Y | X ∈ Br(A1, B1), Y ∈ Br(A2)} = Br(A1, A2, B1),

Br(WkblA1
(Idbl{A2,B2}

))

= {X ∪ Y | X ∈ Br(A2, B2), Y ∈ Br(A1)} = Br(A1, A2, B2).

Then, again by proposition 3,

Br(Idbl{A,B}) = Br(A1, A2, B1) ∪ Br(A1, A2, B2)

= Br(A1, A2, B1 ∧B2)

= Br(A1 ∨A2, B1 ∧B2) = Br(A,B).

46 F. Massaioli

Corollary 8. Let Γ be any sharing-free set of named formulas, A,B a pair of
disjoint and sharing free named formulas that share no names with Γ and such
that A ≡ B: then

Br(WkblΓ (Idbl{A,B})) = Br(Γ,A,B).

Proof of proposition 4. The proof that VLP M = names(Γ) is analogous to that of
proposition 1 and left to the reader. We prove by structural induction on P that
Br(LP M) ⊆ Br(Γ):

– if P is an axiom rule application, the conclusion follows immediately from
corollary 8;

– if P has the form
···· Q

⊢Γ,A

···· R

⊢Γ,A
cut

⊢Γ

then by definition 13, if X ∈ Br(LQM ⊙A LRM) there is either Y ∈ Br(LQM)
or Y ∈ Br(LRM) such that X = Y \ names(A). By induction hypothesis we
have either Y ∈ Br(Γ,A) or Y ∈ Br(Γ,A), hence X ∈ Br(Γ) by corollary 3;

all other cases follow immediately from the induction hypothesis.

F.3 Behaviour under inversion

Lemma 25. For all bl-graphs G,H and sharing-free sets Γ of named formulas,

WkblΓ (G ⊔H) = WkblΓ (G) ⊔ WkblΓ (H).

Proof. Left to the reader.

Lemma 26. For all bl-graphs G and sharing-free sets Γ ∪∆ of named formulas,

WkblΓ (Wkbl∆ (G)) = WkblΓ∪∆(G).

Proof. The identity is obvious for vertices. For the edge-branch relation, let
e �WkblΓ (Wkbl∆(G)) X: there are then Y ∈ Br(G), Z ∈ Br(∆) and W ∈ Br(Γ) such
that e �G Y and X = Y ∪ Z ∪ W . By lemma 8, Z ∪ W ∈ Br(Γ ∪ ∆), hence
e �WkblΓ∪∆(G) X. Conversely, let e �WkblΓ∪∆(G) X: there are Y ∈ Br(G), Z ∈ Br(Γ∪∆)
such that e �G Y and X = Y ∪ Z. Again by lemma 8, Z = Z ′ ∪ Z ′′ for some
Z ′ ∈ Br(Γ), Z ′′ ∈ Br(∆), hence e �WkblΓ (Wkbl∆(G)) X.

Proof of lemma 10. Almost identical to the proof of lemma 5 (appendix E);
only the base case is different (axioms). Let P ′ denote the inverted deriva-
tion inv(P,A ∨B); then:

On the semantics of proofs in classical sequent calculus 47

– if P ends with an axiom rule application of the kind ax{C∧D,A∨B} with
conclusion ⊢∆,C ∧D,A ∨B where Γ = ∆ ∪ {C ∧D}, then by definition 15
we have

LP M = Wkbl∆ (Idbl{C∧D,A∨B}),

LP ′M = Wkbl∆,B(Id
bl
{C,A}) ⊔ Wkbl∆,A(Id

bl
{D,B}),

and by definition 14

LP M = Wkbl∆ (WkblB (Idbl{C,A}) ⊔ WkblA (Idbl{D,B})).

We apply lemmas 25 and 26 to get

LP M = Wkbl∆ (WkblB (Idbl{C,A})) ⊔ Wkbl∆ (WkblA (Idbl{D,B}))

= Wkbl∆,B(Id
bl
{C,A}) ⊔ Wkbl∆,A(Id

bl
{D,B}) = LP ′M.

– if P ends with an axiom rule application of the kind ax{C,D} with conclusion
⊢∆,A∨B,C,D where Γ = ∆∪{C,D}, then by definition 15 and proposition 3

LP ′M = Wkbl∆,A,B(Id
bl
{C,D}) = Wkbl∆,A∨B(Id

bl
{C,D}) = LP M.

Lemma 27. For all bl-graphs G ⊑ H and name sets X ⊆ N ,

VG ⊆ X =⇒ G ⊑ H↾X .

Proof. If VG ⊆ X then obviously VG ⊆ VH↾X = (VH ∩X). Moreover, let e �G Y :
we have Y ⊆ VG ⊆ X by definition 11 and we know by hypothesis that e �H Y ,
hence e �H↾X Y .

Lemma 28. Let Γ ∪ {A ∧B} be a sharing-free set of named formulas, G any
bl-graph with Br(G) ⊆ Br(Γ,A ∧B): then

Br(G↾Γ,A) ⊆ Br(Γ,A) and Br(G↾Γ,B) ⊆ Br(Γ,B).

Proof. We only prove the first half of the statement, the second half is similar.
Observe that (by an easy inductive argument) every branch of B is non-empty, and
remember that Γ,A,B have disjoint name sets. Let X ∈ Br(G↾Γ,A) and assume
X ∈ Br(Γ,B): by lemma 8 there are Y ∈ Br(Γ) and a non-empty Z ∈ Br(B)
such that X = Y ∪Z. However, we have X ⊆ names(Γ,A) by construction, hence
Z ⊆ names(Γ,A), which is disjoint from names(B), a contradiction. Therefore
X /∈ Br(Γ,B), and by exclusion we have X ∈ Br(Γ,A).

Proof of lemma 11. We only prove the first part of the statement, i.e. that

Linvl(P,A ∧B)M = LP M↾Γ,A;

the argument for the second part is analogous. Let P ′ = invl(P,A∧B), As usual
we reason about the shape of P, P ′ without recalling it; the interested reader

48 F. Massaioli

may inspect the proofs of lemmas 2 and 3 (appendix C). Observe first that by
proposition 4 we have

VLP ′M = names(Γ,A) = VLP M↾Γ,A
;

by lemma 27, then, we can prove that LP ′M ⊑ LP M↾Γ,A by showing that LP ′M ⊑ LP M.
For the reverse inclusion, on the other hand, it suffices to show that �LP M↾Γ,A

⊆
�LP ′M. By structural induction on P :

– if P ends with an axiom rule application of the kind ax{C∨D,A∧B} with
conclusion ⊢∆,C ∨D,A ∧B where Γ = ∆ ∪ {C ∨D}, then by definition 15

LP M = Wkbl∆ (Idbl{C∨D,A∧B}) and LP ′M = Wkbl
∆,D

(Idbl{C,A}).

By definition 14 and lemmas 25 and 26

LP M = Wkbl∆ (Wkbl
D
(Idbl{C,A}) ⊔ Wkbl

C
(Idbl{D,B}))

= Wkbl
∆,D

(Idbl{C,A}) ⊔ Wkbl
∆,C

(Idbl{D,B})

= LP ′M ⊔ Wkbl
∆,C

(Idbl{D,B}),

hence LP ′M ⊑ LP M, and we have also

Br(Wkbl
∆,C

(Idbl{D,B})) = Br(∆,C,D,B) = Br(Γ,B)

by corollary 8 and proposition 3. Let then e �LP M↾Γ,A
X: by lemma 28

X ∈ Br(Γ,A), hence by proposition 3, point (iv)

X /∈ Br(Γ,B) = Br(Wkbl
∆,C

(Idbl{D,B})),

and then by exclusion we must have e �LP ′M X;
– if P ends with an axiom rule application of the kind ax{C,D} with conclusion
⊢∆,A ∧B,C,D where Γ = ∆ ∪ {C,D}, then by definition 9

LP M = Wkbl∆,A∧B(Id
bl
{C,D}) and LP ′M = Wkbl∆,A(Id

bl
{C,D}).

It is easy to check, using definition 14, proposition 3, and corollary 8, that

LP M = Wkbl∆,A(Id
bl
{C,D}) ⊔ Wkbl∆,B(Id

bl
{C,D}) = LP ′M ⊔ Wkbl∆,B(Id

bl
{C,D})

with
Br(Wkbl∆,B(Id

bl
{C,D})) = Br(∆,B,C,D) = Br(Γ,B),

and we conclude as in the previous case;
– if P ends with a ∧-rule application introducing A ∧ B whose premiss sub-

trees Q,R have conclusions respectively ⊢Γ,A and ⊢Γ,B, then P ′ = Q.
We have obviously LP ′M ⊑ LQM ⊔ LRM = LP M. For the reverse inclusion, we
argue by exclusion from lemma 28 and proposition 3 and the fact that
Br(LRM) ⊆ Br(Γ,B), concluding that �LP M↾Γ,A

⊆ �LQM = �LP ′M;

On the semantics of proofs in classical sequent calculus 49

– if P ends with a cut-rule application on formulas C,C, with premiss sub-
derivations Q,R, we have by induction hypothesis

Linvl(Q,A ∧B)M = LQM↾Γ,A,C and Linvl(R,A ∧B)M = LRM↾Γ,A,C ,

hence
LP ′M = LQM↾Γ,A,C ⊙C LRM↾Γ,A,C .

Let e �LP ′M X: there is by definition 13 an X-labeled alternating path
z1, . . . , zn between LQM↾Γ,A,C and LRM↾Γ,A,C through interface names(C), with
e = z1zn. This is obviously also an X-labeled alternating path between LQM
and LRM through the same interface, hence e �LP M X and LP ′M ⊑ LP M.
Now let e �LP M↾Γ,A

X: there is, again by definition 13, an X-labeled alternating
path z1, . . . , zn between LQM and LRM through interface names(C) with e =
z1zn. We have to show that this is also an X-labeled alternating path
between LQM↾Γ,A,C and LRM↾Γ,A,C through the same interface, from which
it follows that e �LP ′M X. Let I = names(C) and assume zizi+1 �I

LQM X for
some 1 ≤ i < n: there is Y ⊆ I such that zizi+1 �LQM (X ∪ Y); we know also
that X ⊆ names(Γ,A), hence (X ∪ Y) ⊆ names(Γ,A,C): then

zizi+1 �LQM↾Γ,A,C
(X ∪ Y) and zizi+1 �I

LQM↾Γ,A,C
X.

Similarly, if zizi+1 �I
LRM X then zizi+1 �I

LRM↾Γ,A,C
X, and we conclude as

desired;
– if P ends with a sum-, ∨- or ∧-rule application that does not introduce A∧B,

we conclude by induction hypothesis and the fact that restriction distributes
over graph unions.

Proof of lemma 12. Observe first that

names(Γ,A ∧B) = names(Γ,A) ∪ names(Γ,B),

hence
VLP M = names(Γ,A ∧B) = VLP M↾Γ,A

∪ VLP M↾Γ,B
.

For the branch-label relation, we start by recalling the fact that

Br(LP M) ⊆ Br(Γ,A ∧B) = Br(Γ,A) ∪ Br(Γ,B).

Now let e �LP M X: if X ∈ Br(Γ,A), then in particular X ⊆ names(Γ,A), hence
e �LP M↾Γ,A

X; similarly, if X ∈ Br(Γ,B) then e �LP M↾Γ,B
X. We have then

LP M ⊑ LP M↾Γ,A ⊔ LP M↾Γ,B ;

the reverse inclusion is immediate.

50 F. Massaioli

F.4 Auxiliary lemmas for cut-elimination

Proof of lemma 13. By structural induction on P ; we leave the base case (axioms),
superpositions and the logical rules to the reader. For cuts, assume P has the
form ···· Q

⊢Γ,A

···· R

⊢Γ,A
cut

⊢Γ

We have then LP M = LQM⊙A LRM. Let xy ∈ ELP M: there is by definition 13 a labeled
alternating path z1, . . . , zn between LQM and LRM through the interface names(A),
with xy = z1zn. For all 1 < i < n (the interface nodes) we have A[zi] = A[zi].
Let α = Γ [x]. There are two possibilities:

– odd edges in LQM, even edges in LRM: we prove by secondary induction on i
that for all 1 < i < n, if i is odd then A[zi] = α, if it is even then A[zi] = α.
If i = 2 (even) then z1z2 ∈ ELQM, hence by the primary induction hypothesis

A[z2] = (Γ,A)[z2] = (Γ,A)[z1] = Γ [z1] = Γ [x] = α.

If i > 2 and even, then zi−1zi ∈ ELQM; by the secondary induction hypothesis
A[zi−1] = α, and by the primary hypothesis

A[zi] = (Γ,A)[zi] = (Γ,A)[zi−1] = A[zi−1] = α.

If i > 2 and odd, then zi−1zi ∈ ELRM; by the secondary induction hypothesis
A[zi−1] = α hence A[zi−1] = α; by the primary hypothesis

A[zi] = (Γ,A)[zi] = (Γ,A)[zi−1] = A[zi−1] = α,

therefore A[zi] = α = α. We conclude by cases on n: if n = 2, then by the
primary induction hypothesis

Γ [y] = (Γ,A)[z2] = (Γ,A)[z1] = Γ [x];

if n > 2 and even, then zn−1zn ∈ ELQM and A[zn−1] = α; by the primary
induction hypothesis

Γ [y] = (Γ,A)[zn] = (Γ,A)[zn−1] = A[zn−1] = α = Γ [x];

if n > 2 and odd, then zn−1zn ∈ ELRM and A[zn−1] = α, hence A[zn−1] = α;
by the primary induction hypothesis

Γ [y] = (Γ,A)[zn] = (Γ,A)[zn−1] = A[zn−1] = α = Γ [x].

– odd edges in LRM, even edges in LQM: we proceed as in the previous case,
swapping Q with R and A with A.

On the semantics of proofs in classical sequent calculus 51

Proof of lemma 16. By structural induction on P . We prove the result only for
the base case (i.e. the axioms), all other cases are more or less immediate.

Case (i). P is an axiom rule application of the kind ax{B,A} with conclu-
sion ⊢∆,B,A, where Γ = ∆ ∪ {B}:
– if A = A1 ∨A2 is a disjunction, then inv(P,A) has the form

ax{B1,A1}⊢∆,B1, A1, A2

ax{B2,A2}⊢∆,B2, A1, A2 ∧
⊢∆,B1 ∧B2, A1, A2 ∨
⊢∆,B1 ∧B2, A1 ∨A2

where B = B1 ∧B2. We have

vh(P) = 1 + deg(⊢∆,B1 ∧B2, A1 ∨A2)

= 1 + deg(⊢∆)

+ 1 + deg(B1) + deg(B2)

+ 1 + deg(A1) + deg(A2)

= 3 + deg(⊢∆,B1, B2, A1, A2)

and

vh(inv(P,A)) = 2 +max{1 + deg(⊢∆,B1, A1, A2), 1 + deg(⊢∆,B2, A1, A2)}
= 3 +max{deg(⊢∆,B1, A1, A2), deg(⊢∆,B2, A1, A2)}.

Clearly,

deg(⊢∆,B1, A1, A2), deg(⊢∆,B2, A1, A2) ≤ deg(⊢∆,B1, B2, A1, A2),

hence vh(inv(P,A)) ≤ vh(P);
– if A = A1 ∧A2 is a conjunction, then inv(P,A) has the form

ax{B1,A1}⊢∆,B1, B2, A1 ∨
⊢∆,B1 ∨B2, A1

ax{B2,A2}⊢∆,B1, B2, A2 ∨
⊢∆,B1 ∨B2, A2 ∧

⊢∆,B1 ∧B2, A1 ∨A2

where B = B1 ∨B2. We have as before

vh(P) = 3 + deg(⊢∆,B1, B2, A1, A2)

and

vh(inv(P,A)) = 1 +max{2 + deg(⊢∆,B1, B2, A1), 2 + deg(⊢∆,B1, B2, A2)}
= 3 +max{deg(⊢∆,B1, B2, A1), deg(⊢∆,B1, B2, A2)},

with

deg(⊢∆,B1, B2, A1), deg(⊢∆,B1, B2, A2) ≤ deg(⊢∆,B1, B2, A1, A2),

and again vh(inv(P,A)) ≤ vh(P).

52 F. Massaioli

Case (ii). P is an axiom rule application of the kind ax{B,C} with conclu-
sion ⊢∆,A,B,C, where Γ = ∆ ∪ {B,C}:
– if A = A1 ∨A2 is a disjunction, then inv(P,A) has the form

ax{B,C}⊢∆,A1, A2, B, C
∨

⊢∆,A1 ∨A2, B, C

We have

vh(P) = 1 + deg(⊢∆,A1 ∨A2, B, C)

= 1 + deg(⊢∆,B,C)

+ 1 + deg(A1) + deg(A2)

= 2 + deg(⊢∆,A1, A2, B, C)

and
vh(inv(P,A)) = 2 + deg(⊢∆,A1, A2, B, C),

hence a fortiori vh(inv(P,A)) ≤ vh(P);
– if A = A1 ∧A2 is a conjunction, then inv(P,A) has the form

ax{B,C}⊢∆,A1, B, C
ax{B,C}⊢∆,A2, B, C
∧

⊢∆,A1 ∧A2, B, C

We have as before

vh(P) = 2 + deg(⊢∆,A1, A2, B, C)

and

vh(inv(P,A)) = 1 +max{1 + deg(⊢∆,A1, B, C), 1 + deg(⊢∆,A2, B, C)}
= 2 +max{deg(⊢∆,A1, B, C), deg(⊢∆,A2, B, C)}

with

deg(⊢∆,A1, B, C), deg(⊢∆,A2, B, C) ≤ deg(⊢∆,A1, A2, B, C)

hence vh(inv(P,A)) ≤ vh(P).

G Proof of the semantic cut-admissibility lemma

We devote the present section to the proof of lemma 14, which requires a somewhat
involved construction. We start by fixing a set

Pol = {◦, •}

of polarities. For p ∈ Pol, we write p for the opposite polarity, i.e. let ◦ = •
and • = ◦. As background data for the construction, we have to provide a pair
of bl-graphs G◦, G• and a finite set of names I ⊆ N to act as the composition
interface. The two graphs are required to satisfy the following property:

On the semantics of proofs in classical sequent calculus 53

there is a unique branch name X ⊆ N such that, for all p ∈ Pol and e ∈
EGp

, e �I
Gp

X;

in other words, the two graphs must have collectively a unique branch up to
names in the interface. The restriction has two important consequences:

– all alternating paths between the two graphs through I are necessarily X-
labeled, hence composable;

– any edge can be added to any alternating path, without caring for its label.

More formally, let z1, . . . , zn be an X-labeled alternating path between G◦ and G•
through interface I (definition 12). For any p ∈ Pol we call the path

– p-initial, if all odd edges are in Gp and all even edges in Gp;
– p-final, if it is p-initial with even n, or p-initial with odd n.

Because the graphs and interface – as well as the unique branch label – are
fixed, from now on we are going to speak simply of alternating paths, without
mentioning the full expression (X-labeled alt. paths between G◦ and G• through
interface I). The following properties hold:

Lemma 29. For all p ∈ Pol and edge xy ∈ EGp , x, y is a p-initial and p-final
alternating path.

Lemma 30. For any p, q ∈ Pol, if z1, . . . , zn is a p-initial and q-final alternating
path then zn, . . . , z1 is a q-initial and p-final alternating path.

Lemma 31. Let p ∈ Pol, and let z = z1, . . . , zn, w = w1, . . . , wn be alternating
paths such that z is p-final, w is p-initial and zn = w1: then

zw = z1, . . . , (zn = w1), . . . , wn

is also an alternating path, q-initial iff so is z and q-final iff so is w.

The proofs are tedious but straightforward and we leave them to the interested
reader. The construction operates on finite sets σ of pairs with each pair of the
form

⟨S, (v1, . . . , vn)⟩ ∈ σ

where S ⊆ I×Pol is a set of name-polarity pairs (with names from the interface I)
and v1, . . . , vn ∈ (VG◦ ∪VG•)

∗ is a finite sequence of vertices from the two graphs.
We call σ a state of the construction. We distinguish consistent and live states
based on certain sets of local and global properties, respectively:

Definition 28 (Consistency). Call a state σ of the construction consistent if
and only if all pairs ⟨S, (v1, . . . , vn)⟩ ∈ σ satisfy the following conditions:

(i) mutual exclusion: at most one polarity is assigned to each name in S, i.e.
for all (x, p), (y, q) ∈ S, x = y implies p = q; equivalently, if (x, p) ∈ S then
(x, p) /∈ S.

54 F. Massaioli

(ii) alternation: v1, . . . , vn is an alternating path;
(iii) inclusion: if v1 ∈ I (resp. vn ∈ I), then there is p ∈ Pol such that (v1, p) ∈ S

(resp. (vn, p) ∈ S);
(iv) coloring: if (v1, p) ∈ S (resp. (vn, p) ∈ S), then the alternating path v1, . . . , vn

is p-initial (resp. p-final).

Consider now two sets S, T ⊆ I × Pol of name-polarity pairs. We say that
S, T compose on name x ∈ N (notation S

x
▷◁ T) iff there is a polarity p ∈ Pol

such that (x, p) ∈ S, (x, p) ∈ T and S \ {(x, p)} = T \ {(x, p)}.

Definition 29 (Liveness). Call a state σ of the construction live iff it is
non-empty and, for all ⟨S, z⟩ ∈ σ and (x, p) ∈ S, there is ⟨T,w⟩ ∈ σ such that
S

x
▷◁ T .

Now let us define for any state σ the set of live names of σ:

names(σ) = {x ∈ N | ⟨S, z⟩ ∈ σ, (x, p) ∈ S}.

Definition 30 (Terminal state). Call a state σ of the construction terminal
iff for all ⟨S, z⟩ ∈ σ, S is empty; equivalently iff names(σ) = ∅.

Lemma 32. Let σ be any consistent, live and terminal state: there is a pair ⟨S, z⟩ ∈
σ such that z is a complete alternating path.

Proof. By liveness σ is non-empty, i.e. there is at least one pair ⟨S, z⟩ ∈ σ. Let
z = z1, . . . , zn and assume z1 ∈ I: by the inclusion condition (consistency) there
should be p ∈ Pol such that (z1, p) ∈ S, against the hypothesis that σ be terminal,
hence z1 /∈ I. The same argument shows that zn /∈ I.

Corollary 9. If there is a consistent, live and terminal state, then there is a
complete X-labeled alternating path between G◦ and G• through interface I.

Corollary 10. If there is a consistent, live and terminal state, then the composite
bl-graph G◦ ⊙I G• has at least one edge.

We come now to the key lemma of this proof, showing that every consistent
and live state can be transformed into a consistent, live and terminal one in a
finite number of steps. Thus we reduce the problem of showing that the composite
graph is non-empty to that of constructing a consistent and live state.

Lemma 33 (Reduction lemma). For any consistent and live state σ such
that names(σ) is non-empty, there is a consistent and live state τ such that

names(τ) ⊊ names(σ).

Because the interface I is finite by assumption, the set of live names of any
state must be finite, therefore we can reach a terminal one by iterating the
reduction lemma finitely many times:

On the semantics of proofs in classical sequent calculus 55

Corollary 11. If there is a consistent and live state, then there is a consistent,
live and terminal state.

Corollary 12. If there is a consistent and live state, then the composite bl-graph
G◦ ⊙I G• has at least one edge.

Proof of the reduction lemma. By assumption there is x ∈ names(σ). We asso-
ciate to every pair ⟨S, z⟩ ∈ σ a new pair ⟨S′, z′⟩ constructed as follows, while
simultaneously proving that the new pair satisfies all consistency conditions
(definition 28):

– if there is no p ∈ Pol such that (x, p) ∈ S, then let S′ = S, z′ = z; all
consistency conditions are clearly preserved;

– otherwise let ⟨T,w⟩ ∈ σ be the pair such that S
x
▷◁ T , whose existence is

guaranteed by liveness: we have p ∈ Pol such that (x, p) ∈ S and (x, p) ∈ T ;
– let S′ = S \ {(x, p)} = T \ {(x, p)}; since we are just removing one pair,

mutual exclusion is preserved;
– let z = z1, . . . , zn and w = w1, . . . , wn;
– if both z1, zn ̸= x, then let z′ = z; the last three consistency conditions are

preserved because no endpoint is x;
– if on the other hand w1, wn ̸= x, then let z′ = w; the last three consistency

conditions are preserved because no endpoint is x and S′ = T \ {(x, p)};
– otherwise there are four mutually exclusive cases:

◦ if zn = x,w1 = x then let z′ = z1, . . . , (zn = w1), . . . , wn;
◦ if zn = x,wn = x then let z′ = z1, . . . , (zn = wn), . . . , w1;
◦ if z1 = x,w1 = x then let z′ = zn, . . . , (z1 = w1), . . . , wn;
◦ if z1 = x,wn = x then let z′ = zn, . . . , (z1 = wn), . . . , w1.

For the inclusion condition, observe that no repetition of vertices is allowed
in an alternating path; because the endpoint x has become internal in z′, in-
clusion must still hold for the other endpoints. For alternation: z′ is obtained
by joining two sequences on x, after possibly reversing them. Reversal pre-
serves alternating paths by lemma 30; the composition is correct (lemma 31)
because the two original pairs satisfy the coloring condition, hence the first
half is p-final and the second half is p-initial. Finally, the coloring condition is
preserved because the endpoints preserve their original initiality and finality
by lemmas 30 and 31.

Clearly the construction is performed in such a way that for any ⟨S, z⟩ ∈ σ, there
is no p ∈ Pol such that (x, p) ∈ S′. We define then τ as

τ = {⟨S′, z′⟩ | ⟨S, z⟩ ∈ σ}.

Since σ is finite, so is τ , hence it is a consistent state. We have obviously

names(τ) ⊆ names(σ)

and from what we said above we known that x /∈ names(τ), hence the inclusion
is strict, as required.

56 F. Massaioli

We have now to show that τ is live (definition 29). It must be non-empty
because so is σ; let then ⟨S′, z′⟩ ∈ τ and (y, p) ∈ S′: by construction there is
some pair ⟨S, z⟩ ∈ σ such that S′ = S \ {(x, q)}, and by the liveness of σ there is
another pair ⟨T,w⟩ ∈ σ such that S

y
▷◁ T . Then there is a pair ⟨T ′,w′⟩ ∈ τ such

that T ′ = T \ {(x, q)}, and we have S′ y
▷◁ T ′: remembering that y ̸= x,

– (y, p) ∈ (S \ {(x, q)}) = S′;
– (y, p) ∈ (T \ {(x, q)}) = T ′;
– S′ \ {(y, p)} = (S \ {(y, p)}) \ {(x, q)}

= (T \ {(y, p)}) \ {(x, q)} = T ′ \ {(y, p)}.

As announced above, we complete the proof of lemma 14 by showing that a
consistent and live state can be constructed. We start with an auxiliary lemma:

Lemma 34. For any sharing-free named formula A and function

f : names(A) → Pol

there is either X ∈ Br(A) such that fX = {◦} or Y ∈ Br(A) such that fY = {•}.

Proof. By induction on A. If A = αx then Br(A) = Br(A) = {x}, and necessarily
either f{x} = {◦} or f{x} = {•}.

If A = B ∧ C (with A = B ∨ C) then Br(A) = Br(B) ∪ Br(C)). By induction
hypothesis there is either X ′ ∈ Br(B) such that fX ′ = {◦} or Y ′ ∈ Br(B)
such that fY ′ = {•}. In the first case, let X = X ′ and we’re done. Otherwise,
there is again by induction hypothesis either X ′′ ∈ Br(C) s.t. fX ′′ = {◦},
or Y ′′ ∈ Br(C) s.t. fY ′′ = {•}. If there is such a X ′′, let X = X ′′; otherwise, let
Y = Y ′ ∪ Y ′′ ∈ Br(B ∨ C): we have fY = fY ′ ∪ fY ′′ = {•}.

If A = B∨C, apply the same argument, swapping polarities and A with A.

Proof of lemma 14. We fix G◦ = LP M, G• = LQM and I = names(A). I is obviously
finite, and because the context of the conclusions of P,Q is atomic by hypothesis,
the condition about branches is satisfied too (the unique branch name X is the
unique one in Br(Γ), i.e. names(Γ)).

We construct a state σ as follows:

σ = {⟨f, (x, y)⟩ | f ∈ PolI , p ∈ Pol, xy �Gp
X ∪ Y, fY = {p}}.

Let us unpack the construction first, then we shall prove that the state is consistent
and live. PolI is the set of all functions from I = names(A) to Pol seen as sets
of pairs, i.e. PolI ⊆ I × Pol; we pair each f ∈ PolI with any finite sequence x, y
of vertices such that, for at least one polarity p ∈ Pol, xy is an edge in Gp, and
moreover one of its branch labels satisfies the following conditions:

– it is equal to X ∪ Y for some Y (where X is the unique branch name of Γ
described above);

– it is such that fY = {p}.

σ is clearly finite, hence a state. For consistency (definition 28), let ⟨f, (x, y)⟩ ∈ σ:

On the semantics of proofs in classical sequent calculus 57

– mutual exclusion: this condition can be read as asking that f be the graph
of a function, hence it is obviously satisfied;

– alternation: xy is an edge in either G◦ or G• by construction, hence an
alternating path by lemma 29;

– inclusion: because f is total, if x ∈ I then (x, fx) ∈ f , and similarly for y;
– coloring: let (x, p) ∈ f ; by construction there is q ∈ Pol, Y ∈ N such that

xy �Gq
X ∪ Y with fY = {q}. By lemma 8, every branch name of Gq is the

union of the unique branch name X of Γ with some branch name of either A
(if q = ◦) or A (if q = •). If q = ◦, then, Y ∈ Br(A), otherwise Y ∈ Br(A). By
definition 11 x ∈ X ∪ Y , and because x ∈ I we must have x ∈ Y . We know
that fY = {q}, hence in particular p = f(x) = q. The path x, y is obviously
q-initial, hence p-initial. Analogous reasoning shows that if (y, p′) ∈ f , then
the path is p′-final.

For liveness (definition 29) we argue first that σ is non-empty: by lemma 34
above, there is for each f ∈ PolI at least one branch Y ∈ Br(A) with fY = {◦}
or Y ∈ Br(A) with fY = {•}. Let fY = {p}; by lemma 17, (X ∪ Y) ∈ Br(Gp),
i.e. there is e �Gp

X ∪ Y . We have thus proven not just that σ is non-empty, but
also that for each f ∈ PolI there is at least one pair ⟨f, z⟩ ∈ σ.

Now let ⟨f, z⟩ ∈ σ, (x, p) ∈ f ; by inverting the polarity assignment of x in f
we obtain f ′ = (f \ {(x, p)}) ∪ {(x, p)} ∈ PolI . By the reasoning above there is
⟨f ′,w⟩ ∈ σ, and it is immediate by construction that f

x
▷◁ f ′.

H Totality lemmas and correctness algorithm for BLG

Proof of lemma 17. By structural induction on P . If P ends with an axiom
rule application, the conclusion is equivalent to corollary 8; if P ends with
a superposition rule application, it follows immediately from the induction
hypothesis; if P ends with a logical rule, we conclude from the induction hypothesis
and proposition 3, points (ii) and (iii). The details are left to the reader.

Proof of lemma 18. We have names(Γ,A,B) = names(Γ,A ∨ B); Br(Γ,A,B) =
Br(Γ,A∨B) by proposition 3; and finally (Γ,A,B)[x] = (Γ,A∨B)[x] for all x ∈
names(Γ,A,B).

Proof of lemma 19. We have two prove two facts: (i) that G is effectively equal
to the union of the two restrictions, and (ii) that the two restrictions are total
w.r.t. the restricted conclusions. For fact (i), we have obviously

names(Γ,A ∧B) = names(Γ,A) ∪ names(Γ,B).

Then by construction VG↾Γ,A
= names(Γ,A) and VG↾Γ,B

= names(Γ,B), hence
VG = VG↾Γ,A

∪ VG↾Γ,B
. Now let e �G X. By totality X ∈ Br(Γ,A ∧ B); then

by proposition 3 either X ∈ Br(Γ,A) or X ∈ Br(Γ,B): in the first case we
have X ⊆ names(Γ,A) hence e �G↾Γ,A

X; similarly in the second case we have
e �G↾Γ,B

X. The reverse inclusion is obvious.

58 F. Massaioli

For fact (ii), we have already argued that the two restriction have the ap-
propriate vertex sets (definition 17, point (i)); that all edges link dual atoms
(definition 17, point (iii)) follows from the fact that the edges come from G, which
satisfies the same condition, and for all x ∈ names(Γ,A) (resp. names(Γ,B))
we have (Γ,A ∧ B)[x] = (Γ,A)[x] (resp. (Γ,B)[x]). Finally we have to show
that Br(G↾Γ,A) = Br(Γ,A) and Br(G↾Γ,B) = Br(Γ,B) (definition 17, point (ii)).
The forward inclusions are proved already in lemma 28. For the reverse, let
X ∈ Br(Γ,A) (resp. Br(Γ,B)); by totality there is e �G X, and because
X ⊆ names(Γ,A) (resp. names(Γ,B)) we have e �G↾Γ,A

X (resp. e �G↾Γ,B
X).

H.1 Correctness algorithm for BLG

Proof of proposition 5. We work under the reasonable assumption that checking
name equality requires constant time. Let us start by recalling the definition of
the size of G (definition 19):

size(G) = size(⊢Γ) + |VG|+
∑

e�GX

|X|.

The size of ⊢Γ (definition 24, appendix B) is by proposition 9 the sum of the
number of atom occurrences in Γ (notation #at(⊢Γ)) with the number of logical
symbols, also called the degree of Γ (notation deg(Γ)). Because Γ is sharing-free
by hypothesis, the number of atom occurrences coincides with the number of
names, i.e. #at(⊢Γ) = |names(Γ)|.

Observe also that the sum at the end of the expression is taken not over the
set of branches of G, but over all edge-branch pairs, i.e. a branch may be counted
more than once if it has multiple edges. Because e �G X implies e ⊆ X, i.e. no
branch in a bl-graph is empty, the sum provides an upper bound to the number
of edge-branch pairs as well as to that of edges and branches, i.e. we have

|EG|, |Br(G)| ≤ |�G| ≤ size(G).

We have to check three conditions separately (definition 17):

(i) VG = names(Γ): checking name set equality is worst-case polynomial in their
cardinalities, and constructing the set names(Γ) from Γ requires polynomial
time in the size of ⊢Γ ;

(ii) Br(G) = Br(Γ): this is the most complex problem. Generating just one
element in Br(Γ) amounts to persistently expanding one branch of a GS4N

derivation of Γ until an atomic sequent is reached; the length of such a
branch is known to be bounded by the complexity degree of ⊢Γ [30], hence
the cost of generating one branch name is polynomially bounded in the
size of ⊢Γ . However, the total number of branches is in the worst case
exponential in the complexity degree of ⊢Γ : thus we cannot take the naive
approach of constructing the whole set Br(Γ), then testing for equality. We
describe an informal algorithm: the idea is to generate the branch names
of Γ incrementally, match them with some element from the set Br(G) and

On the semantics of proofs in classical sequent calculus 59

erase that element. For every matching attempt, either the algorithm fails or
the number of branches still to be matched decreases: in this way the number
of generated branch names is always bounded by the cardinality of Br(G).
Let S be the branch set to test (initially S = Br(G)), ∆ the sequent to test
against (initially ∆ = Γ); the algorithm has three phases:
– problem reduction phase: if the sequent ∆ to test against contains a

disjunction, i.e. is of the form ∆′, A ∨ B, then replace it with ∆′, A,B.
If it contains no disjunction but at least a conjunction, i.e. is of the
form ∆′, A ∧B, then replace it with ∆′, A and append ∆′, B to a list of
sequents to test against later. By proposition 3, the set of branches to
test against has not changed;

– matching phase: if the sequent ∆ to test against is atomic, then it has
a unique branch X = names(∆). We search for that branch in S: if not
found, then X ∈ Br(Γ) but X /∈ Br(G), and we stop; if found, we erase
X from S and move on to the backtracking phase;

– backtracking phase: if both S and the list of delayed sequents are empty,
then we’re done. If S is empty but the list is not, then some branches
are missing from Br(G) and we stop. If S has some elements but the list
is empty, then there are excess branches in Br(G) and we stop. If both
are non-empty, we pick the first element of the list as the new ∆, erase it
from the list and move back to the reduction phase.

It is clear that the number of steps in the reduction phase is bounded by the
complexity degree of the active sequent ∆, which always decreases: when it
reaches zero, we move to the matching phase. The matching phase either
fails or decreases the size of the set B; once the set B becomes empty, the
algorithm stops: thus the size of B bounds the number of future reduction
phases. Observe now that a reduction step requires polynomial time in the
size of the active sequent; a matching step requires polynomial time in the
cardinality of the generated branch and the sum of the cardinalities of all
elements of B. Backtracking steps require constant time. Every measure
mentioned above is itself bounded by size(G). We have then a polynomial
bound on the execution time of the algorithm with parameter (size(G))3.

(iii) for all xy ∈ EG, Γ [x] = Γ [y]: we observed at the beginning of the proof that
size(G) bounds |EG|; finding the atom associated to a given name in Γ is
polynomial in the size of ⊢Γ .

60 F. Massaioli

ax{αx,αu}⊢αx, αy, αu

∨
⊢αx ∨ αy, αu

ax{αz ,αu}⊢αz, αw, αu

∨
⊢αz ∨ αw, αu

∧
⊢(αx ∨ αy) ∧ (αz ∨ αw), αu

ax{αy,αu}⊢αx, αy, αu

∨
⊢αx ∨ αy, αu

ax{αw,αu}⊢αz, αw, αu

∨
⊢αz ∨ αw, αu

∧
⊢(αx ∨ αy) ∧ (αz ∨ αw), αu

cut
⊢(αx ∨ αy) ∧ (αz ∨ αw)

(a) The initial derivation, where the conjunction in the conclusion is not introduced by
the last rule. Assume names x, y, z, w, u ∈ N are pairwise distinct.

ax{αx,αu}⊢αx, αy, αu

∨
⊢αx ∨ αy, αu

ax{αy,αu}⊢αx, αy, αu

∨
⊢αx ∨ αy, αu

cut
⊢αx ∨ αy

ax{αz ,αu}⊢αz, αw, αu

∨
⊢αz ∨ αw, αu

ax{αw,αu}⊢αz, αw, αu

∨
⊢αz ∨ αw, αu

cut
⊢αz ∨ αw

∧
⊢(αx ∨ αy) ∧ (αz ∨ αw)

(b) The transformed derivation, after isolating the conjuction. The two halves of the
original alternating path are now disconnected.

x y z w x y z w

(c) The axiom graph of the original derivation (left) and that of the transformed
one (right).

Fig. 4: A derivation with cuts whose axiom graph decreases when isolating the
conjunction in its conclusion.

On the semantics of proofs in classical sequent calculus 61

ax{αx,αt}
⊢αx, αy, β

z
, αt, αv

ax{αx,αt}
⊢αx, αy, β

z
, αt, βw

∧
⊢αx, αy, β

z
, αt, αv ∧ βw

ax{αy,αv}

⊢αx, αy, β
z
, βu, αv

ax{βz
,βw}

⊢αx, αy, β
z
, βu, βw

∧
⊢αx, αy, β

z
, βu, αv ∧ βw

∧
⊢αx, αy, β

z
, αt ∧ βu, αv ∧ βw

ax{αt,αv}
⊢αx, αy, β

z
, αt, αv, β

w

∨
⊢αx, αy, β

z
, αt, αv ∨ β

w

ax{βu,β
w}

⊢αx, αy, β
z
, βu, αv, β

w

∨
⊢αx, αy, β

z
, βu, αv ∨ β

w

∧
⊢αx, αy, β

z
, αt ∧ βu, αv ∨ β

w

cut

⊢αx, αy, β
z
, αt ∧ βu

(a) The initial derivation, where the conjunction in the conclusion is not introduced by the last rule. Assume names x, y, z, t, u, v, w ∈ N are pairwise distinct.

ax{αx,αt}
⊢αx, αy, β

z
, αt, αv

ax{αx,αt}
⊢αx, αy, β

z
, αt, βw

∧
⊢αx, αy, β

z
, αt, αv ∧ βw

ax{αt,αv}
⊢αx, αy, β

z
, αt, αv, β

w

∨
⊢αx, αy, β

z
, αt, αv ∨ β

w

cut

⊢αx, αy, β
z
, αt

ax{αy,αv}

⊢αx, αy, β
z
, βu, αv

ax{βz
,βw}

⊢αx, αy, β
z
, βu, βw

∧
⊢αx, αy, β

z
, βu, αv ∧ βw

ax{βu,β
w}

⊢αx, αy, β
z
, βu, αv, β

w

∨
⊢αx, αy, β

z
, βu, αv ∨ β

w

cut

⊢αx, αy, β
z
, βu

∧
⊢αx, αy, β

z
, αt ∧ βu

(b) The transformed derivation, after isolating the conjuction. The two halves of the original alternating path are now disconnected.

x y z t u x y z t u

(c) The axiom graph of the original derivation (left) and that of the transformed one (right).

Fig. 5: A derivation with cuts whose axiom graph decreases when isolating the conjunction in its conclusion. The lost path does not visibly cross a conjunction.

62 F. Massaioli

ax{αz ,αt}
⊢βx, β

y
, αz, αt, αv, αw

ax{βx,β
y}

⊢βx, β
y
, αz, αu, αv, αw

∧
⊢βx, β

y
, αz, αt ∧ αu, αv, αw

ax{βx,β
y}

⊢βx, β
y
, αs, αt, αv, αw

ax{αs,αu}

⊢βx, β
y
, αs, αu, αv, αw

∧
⊢βx, β

y
, αs, αt ∧ αu, αv, αw

∧
⊢βx, β

y
, αz ∧ αs, αt ∧ αu, αv, αw

∨
⊢βx, β

y
, (αz ∧ αs) ∨ (αt ∧ αu), αv, αw

ax{αz ,αs}

⊢βx, β
y
, αz, αs, αv, αw

∨
⊢βx, β

y
, αz ∨ αs, αv, αw

ax{αt,αv}
⊢βx, β

y
, αt, αu, αv, αw

ax{αu,αw}

⊢βx, β
y
, αt, αu, αv, αw

⊔
⊢βx, β

y
, αt, αu, αv, αw

∨
⊢βx, β

y
, αt ∨ αu, αv, αw

∧
⊢βx, β

y
, (αz ∨ αs) ∧ (αt ∨ αu), αv, αw

cut

⊢βx, β
y
, αv, αw

(a) The initial derivation, with a unique cut-rule. Assume names x, y, z, s, t, u, v, w ∈ N are pairwise distinct. There is an alternating path connecting αv with αw. Because the conclusion is atomic, there is only one branch name up to names
in the interface, hence all edges are compatible.

ax{αz ,αt}
⊢βx, β

y
, αz, αt, αv, αw

ax{βx,β
y}

⊢βx, β
y
, αz, αu, αv, αw

∧
⊢βx, β

y
, αz, αt ∧ αu, αv, αw

ax{βx,β
y}

⊢βx, β
y
, αs, αt, αv, αw

ax{αs,αu}

⊢βx, β
y
, αs, αu, αv, αw

∧
⊢βx, β

y
, αs, αt ∧ αu, αv, αw

∧
⊢βx, β

y
, αz ∧ αs, αt ∧ αu, αv, αw

ax{αz ,αs}

⊢βx, β
y
, αz, αs, αt ∧ αu, αv, αw

∨
⊢βx, β

y
, αz ∨ αs, αt ∧ αu, αv, αw

cut

⊢βx, β
y
, αt ∧ αu, αv, αw

ax{αt,αv}
⊢βx, β

y
, αt, αu, αv, αw

ax{αu,αw}

⊢βx, β
y
, αt, αu, αv, αw

⊔
⊢βx, β

y
, αt, αu, αv, αw

∨
⊢βx, β

y
, αt ∨ αu, αv, αw

cut

⊢βx, β
y
, αv, αw

(b) A logical cut-reduction step has been applied (see section 8). The conjunction αt ∧ αu is now outside the interface of the upper cut: the alternating path that connects αt with αu must be omitted when computing the interpretation, as it
uses edges from incompatible branches (highlighted in red and black). As a result, the edge between αv and αw is lost.

x y v w

{x,y,v,w} {x,y,v,w}

x y v w

{x,y,v,w}

(c) The branch-labeled axiom graph of the original derivation (left) and that of the reduced one (right).

Fig. 6: A derivation whose branch-labeled axiom graph decreases when a logical cut-reduction step is applied.

	On the semantics of proofs in classical sequent calculus.
	Introduction
	Tracking atom occurrences
	Inversion and isolation of logical rules
	Admissibility of contraction and weakening

	Axiom graphs
	Axiom graphs do not increase under inversion and isolation
	Axiom graphs are not invariants of isolation and normalisation

	Branch-labeled axiom graphs
	Naming branches
	Branch-labeled name graphs
	Branch-sensitive composition
	Interpreting derivations

	Main results
	Behaviour under inversion and isolation
	Cut-elimination theorem

	Totality and canonical forms
	The proof system BLG
	Properties of the system BLG

	On the absence of a cut-reduction procedure
	Graphs
	Complexity measures on formulas, sequents and derivations
	Proofs of the inversion lemmas
	Renamings
	Proofs of lemmas regarding simple axiom graphs
	Proofs of lemmas regarding branch-labeled axiom graphs
	Properties of branch sets
	Properties of branch-labeled axiom graphs
	Behaviour under inversion
	Auxiliary lemmas for cut-elimination

	Proof of the semantic cut-admissibility lemma
	Totality lemmas and correctness algorithm for BLG
	Correctness algorithm for BLG

